ボトルネック: テクノロジー界の大物たち、AI がどこで使われているのか本当にご存知ですか?

ボトルネック: テクノロジー界の大物たち、AI がどこで使われているのか本当にご存知ですか?

需要と供給の関係は商品経済における基本的な関係です。市場経済においては、買い手と売り手、つまり需要と供給という 2 つの対立するカテゴリしかありません。市場において比較的先進的な産業方向である人工知能も、資本と需要と供給の問題に直面しています。現時点では、人工知能に関する最大の問題は技術的な問題ではなく、需要の問題であると思われます。つまり、過去1年間で人工知能は資本に頻繁に支持され、人工知能技術と企業が急速に台頭しました。現在でも、応用シナリオが不足しているため、人工知能を収益化するのは依然として困難です。

[[229882]]

シナリオのないAIは役に立たない

需要が供給を上回ると、市場は売り手市場となり、売り手は有利な低い立場になります。人工知能の分野における問題は、需要がないことです。

対照的に、AIスピーカーなどの現在のAI製品の最大の問題は、需要がなく、ユーザーの悩みを解決できないことです。多くの企業がAIスピーカーを将来のスマートライフへの重要な入り口と位置付けていますが、ほとんどのユーザーはAIスピーカーを購入してから生活が便利になったとは感じていません。

AI オーディオ メーカーにとって、たとえパフォーマンスが極めて優れた製品を製造したとしても、さらに重要な問題が待ち受けています。それは、新しいアプリケーション シナリオをどのように作成するかということです。シナリオがなければ需要はなく、需要がなければ市場もありません。需要がないため、AI スピーカーは単なる時間の無駄です。

[[229883]]
AIスピーカーは本当に悩みを解決するのでしょうか?それとも、単なる電子機器のジャンク品でしょうか?

AIはただパフォーマンスするだけではなく

Google が AlphaGo の人間に対する勝利を大々的に宣伝するとき、人間を倒すために必要な技術が私たちの生活の悩みを解決できるのか、AI の人間に対する勝利に市場価値があるのか​​、それとも単なる技術の向上なのか、私たちは考えるべきでしょうか。

Google は、この種のチェスのスキルを競う最初の企業ではありません。前世紀には、IBM の Deep Blue がチェスのゲームを開始しました。それ以来、同様のチェス ゲームが一般的になっています。

人工知能はベクトルマシンにまで遡ることができます。機械学習において、サポート ベクター マシン (SVM、サポート ベクター ネットワークとも呼ばれる) は、分類および回帰分析でデータを分析するための教師あり学習モデルおよび関連学習アルゴリズムです。つまり、ベクターマシンからディープブルー、そしてアルファ碁まで、人類は長きにわたって人工知能と機械学習を研究してきたのです。

数十年の歴史を持つAI技術は、まだ実験室の「パフォーマー」に過ぎず、社会のテストを経験しておらず、市場の需要と供給を満たすことができず、価値がありません。

AIは雇用と市場の需要を増やすはずだ

今日の市場経済システムでは、供給が需要を下回る産業を見えざる手が操作しています。この手の影響により、今日の社会は、供給が需要を上回った前世紀のヨーロッパやアメリカの市場に非常に似ています。昔、人々は川に牛乳を捨てていました。今日、人間は過剰なエネルギーを消費するために過剰な娯楽を好みます。

[[229884]]
ボストンダイナミクスロボットシリーズ

しかし、製品は製造後に販売することはできません。これは今日の市場において最も重要な問題です。 AIの出現により、多くの反復的な仕事が消滅の危機に瀕しています。編集者、電話による顧客サービス、介護士、清掃員、さらには株式トレーダーなど、同様の職種が消滅の危機に直面しています。

AIの出現により雇用が失われています。AIは商品の循環を刺激することはできませんが、常に余分なリソースの滞留を生み出しています。供給が需要を上回る社会では、これは非常に危険です。もちろん、人工知能が商品の販売を手助けしてくれるなら、それは別のシナリオになるでしょう。

AIは危険な仕事で人間を助けるために使われている

ロシアのチェルノブイリ原子力発電所の漏洩後、ここも立ち入り禁止区域となり、ホラー映画の撮影に使われる運命となった。 2011年に日本で福島原発の原発事故が起きて以来、長い間放置されていました。人間が立ち入ることができない禁断の生命領域は、AIロボットにとって最適なテスト環境となるかもしれない。

[[229885]]
少なくとも7台のロボットが原発内に侵入後、故障(写真は東京電力公式サイトより)

最初は、核放射線防護能力がほとんどない救助ロボットが漏洩エリアに入り、即座に「殺された」が、その後、核放射線耐性指数を搭載したロボット「戦士」が次々とそこに行き、数分間持ちこたえたものもあれば、1時間持ちこたえたものもあった。ロボットが即死するたびに、それは資金の損失と実験の失敗に過ぎません。しかし、「犠牲」がロボットではなく、プロの科学者である場合。そうなると、人類が失うものは単なるお金ではなく、また失敗した実験ほど単純なものでもない。

アプリケーションシナリオがなければ、テクノロジーは役に立たない

人工知能が研究室から社会へ移行する場合、必然的に市場の精査と需要と供給のバランスに直面することになるだろう。人間の生活の悩みを解決できず、応用シナリオもなければ、その技術は役に立たず、AI を収益化することはできません。

<<:  人工知能を理解するのに役立つ記事(画像付き)

>>:  実践的なスキル: システムレベルからディープラーニングコンピューティングを最適化するにはどうすればよいでしょうか?

ブログ    
ブログ    

推薦する

AI、機械学習、ディープラーニングのつながりと違いを1つの記事で理解する

急速に変化する今日のテクノロジーの世界では、人工知能 (AI)、機械学習 (ML)、ディープラーニン...

...

AIの革命的道: OpenAIのGPT-4ツアー

ソフトウェア開発者は OpenAI の GPT-4 を使用して複数のアプリケーションを生成し、時間の...

iOS 18はAIネイティブシステムの第1世代となるか? AppleはAIをシステムに導入することを急いでおり、史上最大のアップデートを先導している。

著名なテクノロジー記者マーク・ガーマン氏によると、Appleはバグ修正に集中するため、iOS 18の...

会話型 AI は FMCG 業界でどのように導入されていますか?

今日、ますます多くの消費財 (CPG) 企業が、日用消費財 (FMCG) 事業に AI テクノロジー...

中国チームが世界初のAI全自動設計CPU「Enlightenment 1」を発表:人間の介入なし、性能は486に匹敵

6月30日、「半導体産業展望」の報道によると、中国科学院計算技術研究所などの機関がAI技術を活用し、...

Google Gemini の大きな転換? Stanford Meta Chinese は推論性能が GPT-3.5 よりも優れていることを証明

Gemini の推論能力は本当に GPT-4 よりも弱いのでしょうか?以前、Google の大ヒット...

AIが人間社会に与える影響

今後 25 年間は、既存の制御可能かつプログラム可能ないわゆる「人工知能」を活用して、人類が生物学の...

ロボット宅配便があなたの玄関までお届けします!フォードが「無人配送」の最後のハードルを解決

Google と Amazon が競い合っている無人配達市場を覚えていますか? そこに新たなプレーヤ...

AI界のお笑い王に100万の賞金!北京郵電大学、南洋理工大学などが「砂像動画」データセットを公開 FunQA:アルゴリズムで人間のユーモアを学習

人は直感に反する動画(ユーモラスで独創的で視覚的に魅力的な動画)から容易に喜びを得ることができます。...

「ブラックミラー」に匹敵する-AI技術が母親に亡くなった娘の姿を見せた

現在、外国の科学技術チームがAI技術を利用して、唯一の子供を亡くした母親の長年の願いを叶えた。彼らは...

NVIDIA が Canvas を発表: AI を活用してシンプルな筆遣いをフォトリアリスティックな風景画に変換

[[407129]] 2年前、NVIDIAは、大雑把な落書きをリアルタイムでフォトリアリスティックな...

Amazon のニューラル ネットワークに関する書籍トップ 10

近年、データサイエンスとデータマイニングの人気が高まっています。ニューラルネットワークとディープラー...