炭素クレジット監査における人工知能の応用

炭素クレジット監査における人工知能の応用

カーボン クレジットとは、保有者に 1 トンの二酸化炭素またはその他の温室効果ガスに相当する排出権を与える、市場性のある許可証または証明書のことです。実質的には、温室効果ガスの排出者に対するカーボン オフセットです。カーボンクレジットの主な目的は、地球温暖化の影響を緩和するために、産業活動による温室効果ガスの排出を削減することです。余剰の炭素クレジットを販売することもできます。

したがって、企業には温室効果ガスの排出を削減するインセンティブが2つのレベルで存在する。第1に、割り当てを超過した場合には罰則が科せられること、第2に、排出許可証の一部を保有して再販することで利益を得ることができることである。

カーボン クレジットは次の 2 つのカテゴリに分けられます。

自主クレジット市場で取引されるカーボンオフセットの一種は、自主的排出削減 (VER) と呼ばれます。

プロジェクトの排出量を相殺するために法的に発行される排出単位(またはクレジット)は、認証排出削減量(CER)と呼ばれます。

企業は、以下の方法でカーボン クレジットに関する AI の支援を受けることができます。

1. 人工知能(AI)が炭素排出量を追跡

新たな IoT 駆動型デバイスは、企業が自社の二酸化炭素排出量全体にわたって排出量を追跡および監視するのに役立ちます。これらの IoT デバイスは、企業が自社の活動や業務に関するデータだけでなく、材料を含むサプライ チェーンのあらゆるコンポーネントからのデータを収集して整理するのに役立ちます。

2. 人工知能(AI)は物質に含まれる炭素排出量を追跡するために使用できる

組み込まれた炭素の測定は、複雑な製造サプライ ネットワークを通じて材料を追跡する必要があるため困難です。 AI は、大規模な職場では追跡が難しい全体的な材料に含まれる炭素排出量を計算するのに役立ちます。

3. カーボンオフセット

カーボンオフセットの監視には、企業が炭素排出量を相殺するために実行するさまざまな操作のすべてを綿密に記録する必要があります。人工知能、物体認識、クラウド コンピューティングなどのテクノロジーにより、企業は人間の介入を最小限に抑えながらデータを自動的に記録および分析できるようになります。

4. 空気の質

人工知能 (AI) は、企業が空気の質と汚染レベルを測定および予測したり、職場の大気汚染の増減を追跡および予測したりするのに役立ちます。

5. スマートな廃棄物管理

AI は現場での分別を徹底し、廃棄物の不法投棄を防ぐ方法を学習できるため、炭素排出量と汚染の削減に役立ちます。

6. 炭素クレジット取引の効率性を向上させる

人工知能と予測分析は、企業が手間をかけずにカーボン クレジット取引を行うのに役立ち、カーボン クレジット取引業界全体を強化します。

7. 設備効率の向上

現場で使用される機械の数が増えると、人間がすべての機械を常に監視することは不可能であるため、手動の資産管理は非効率になります。 AI テクノロジーを使用すると、稼働時間、燃料使用量、機器の無駄を途切れることなく継続的に監視し、機械の使用を最適化することができます。

8. カーボンクレジット

人工知能、モノのインターネット、クラウド コンピューティングをすべて連携させることで、企業のカーボン クレジットを自動的に追跡できます。

9. 炭素排出量予測

予測 AI は、企業が現在の取り組み、新しい炭素削減戦略、将来のニーズを考慮して、炭素排出量全体にわたって将来の排出量を予測するのに役立ちます。

10. 人工知能(AI)は化石燃料からの炭素排出を検出できる

人工知能は、モノのインターネットなどの他のテクノロジーとともに、作業現場のさまざまな発生源からの炭素汚染を追跡するために使用できます。これにより、企業は排出量の多い燃料と少ない燃料を特定し、目標を設定し、使用方法を決定し、排出量を削減できるようになります。

<<:  顔を自由に編集! Adobe が新世代の GAN アーティファクトを発表: 最大 35 の顔属性の変更をサポート

>>:  マスク氏はまたも常識に反する発言をしました。自動運転は普及初期段階では渋滞を増加させるでしょう。

ブログ    
ブログ    
ブログ    

推薦する

スポーツイベントではロボットが人間に取って代わるのでしょうか?

スポーツにロボットを導入することは、器用な移動、リアルタイムのモーション制御、経路計画などの最新ロボ...

IT ライフ: 遺伝的アルゴリズムを使用してコンピューターに歌詩を書かせる

出会いは幻想的で、窓の外はまた夜明けだった。弦楽器の音とかすかな笑顔をいつも思い出すが、世の中に花が...

Google Brain の新しいアルゴリズムは TPU を使用せずに AI トレーニングを高速化できる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

データ構造とアルゴリズムソート - 理解できないなら、私に相談してください

[[194165]]以下では、主にデータ構造の教科書で紹介されている「10 種類のソートアルゴリズム...

人工知能は「絶滅危惧」言語の保護に大きな役割を果たすかもしれません!

国連の統計によると、私たちが住む地球上には西暦8世紀以降、2万以上の人間の言語が出現しましたが、今日...

機械学習がソーシャルメディアのプロフィールから明らかにする5つの秘密

[51CTO.com クイック翻訳] 現在、大手データ企業は機械学習技術を積極的に活用し、人間社会に...

...

Facebook のインタラクティブ ニューラル ネットワーク可視化システム ActiVis がニューラル ネットワークの「ブラック ボックス」を公開

これまで、多くのメディアがニューラルネットワークの「ブラックボックス」問題について熱く議論してきまし...

2020 年の人工知能に関するトップ 10 の予測

[[318614]] [51CTO.com クイック翻訳] 2019年、世界中の意思決定者の53%が...

将来的には映画の吹き替えにも人工知能が使われるようになるのでしょうか?

英国人映画監督が人工知能(AI)を使って外国映画の鑑賞方法に革命をもたらそうとしている。俳優の顔をデ...

2018 年に人工知能を変える 5 つのビッグデータ トレンド

[[211908]]ビッグデータや人工知能の広範な導入を通じて、これらの新興技術の大きな影響が世界経...

高品質なマルチビュー画像生成、シーン素材を完璧に再現! SFUらはMVDiffusionを提案した

フォトリアリスティックな画像生成は、仮想現実、拡張現実、ビデオゲーム、映画制作などの分野で幅広く応用...

DeepGlint: 顔認識の最新の進歩と産業グレードの大規模な顔認識の実践に関する議論

[[380229]] 1. 顔認識の背景紹介簡単に言えば、顔認識の問題は、2 つの顔が与えられたとき...

GitHub CEO: AIアシスタントは同社にとって金のなる木となった

最新のニュースとしては、GitHubのCEOであるThomas Domke氏がメディアとのインタビュ...

...