エンドツーエンドの自動運転に向けて、Horizo​​n Robotics が Sparse4D アルゴリズムを正式にオープンソース化

エンドツーエンドの自動運転に向けて、Horizo​​n Robotics が Sparse4D アルゴリズムを正式にオープンソース化

Horizo​​n Roboticsは1月22日、純粋な視覚ベースの自動運転アルゴリズムであるSparse4Dシリーズのアルゴリズムを一般に公開し、エンドツーエンドの自動運転やスパース知覚などの最先端技術の探求に業界の開発者が参加することを奨励しました。現在、Sparse4D アルゴリズムは GitHub プラットフォームで利用可能です。開発者は Horizo​​n の公式 GitHub アカウント「Horizo​​n Robotics」をフォローしてソースコードを入手できます。

Sparse4D は、時間的マルチビュー融合認識技術のカテゴリに属する​​、長期シリーズのスパース 3D オブジェクト検出に向けた一連のアルゴリズムです。 Sparse4D は、スパース知覚の業界発展の傾向に応えて、純粋にスパースな融合知覚フレームワークを構築し、知覚アルゴリズムをより効率的かつ正確にし、知覚システムをより簡潔にしました。 Sparse4D は、高密度 BEV アルゴリズムと比較して計算の複雑さを軽減し、認識範囲における計算能力の制限を打ち破ります。認識効果と推論速度の両方で高密度 BEV アルゴリズムを上回ります。 Sparse4D は、nuScenes ピュアビジョン 3D 検出リストと 3D トラッキング リストの両方で 1 位にランクされ、SOLOFusion、BEVFormer v2、StreamPETR などの最新の方法の数々を抑えて SOTA になりました。

Sparse4Dアルゴリズムアーキテクチャ

3 バージョンの反復を経て、Horizo​​n Sparse4D チームは、スパース アルゴリズムのパフォーマンスの向上、時系列融合計算の複雑さの軽減、エンドツーエンドのターゲット追跡の実現などの技術的な困難を克服し、最近「Sparse4D v3: エンドツーエンドの 3D 検出と追跡の進化」という論文を発表しました。 Sparse4D は、Horizo​​n のビジネス データに基づいてパフォーマンス検証を完了し、Horizo​​n Journey 5 コンピューティング ソリューションに導入されました。計画によれば、Sparse4D は Horizo​​n の次世代製品に使用される予定です。

Horizo​​n Robotics の副社長兼ソフトウェア プラットフォーム製品ラインの社長である Yu Yinan 博士は、次のように述べています。「業界は、単一のネットワークで認識タスク全体を完了できるエンドツーエンドの認識の時代に入りました。Sparse4D シリーズのアルゴリズムは、スパース アルゴリズムのパフォーマンスを新しいレベルに引き上げ、エンドツーエンドのマルチターゲット追跡を実現しました。これは、スパース認識とエンドツーエンドの自動運転の両方にとって画期的な出来事です。Horizo​​n Robotics は、Sparse4D を業界全体にオープンソース化することを決定しました。業界の優れた開発者とともに進歩していくことを楽しみにしています。」

従来の認識システムとエンドツーエンドの認識システムの比較

Sparse4D シリーズのアルゴリズムのオープンソース化は、インテリジェント ドライビングのためのオープンソース ソフトウェア エコシステムの構築に Horizo​​n が積極的に参加しているもう 1 つの例です。近い将来、Sparse4D は業界の開発者に広く使用され、純粋なビジョンによるエンドツーエンドの自動運転の実装を大きく促進すると予想されます。さらに、Horizo​​n は最近、ベクトル化されたシーン表現に基づくエンドツーエンドの自動運転アルゴリズムである VAD や、エンドツーエンドのベクトル マップのオンライン構築方法である MapTR などの先進技術をオープンソース化し、業界の加速的な発展を継続的に推進しています。

Horizo​​n Roboticsは、技術の源泉をスマートカー産業のエコシステムに浸透させることに注力しています。独自の革新的な技術、画期的な製品、ソリューションを、より多くのスマートカー産業のエコシステム パートナーの商業価値に変換し、業界のすべての関係者と緊密に連携し、オープンに統合し、イノベーションに協力することに注力しています。 Horizo​​n は、自動運転の量産化に向けて、オープンソースとオープン性を推進し続け、最先端技術をより迅速に量産化へと移行させ、業界とともに明るい未来を創造していきます。

<<: 

>>:  「幻想」を消し去れ! Google の新しい ASPIRE メソッドにより、LLM は自己採点が可能になり、その効果はボリューム モデルよりも 10 倍優れています。

ブログ    
ブログ    

推薦する

今日の人工知能はすでに販売業界に混乱をもたらしている

人工知能と機械学習は現在では導入が容易であり、現在実行されている反復的なタスクやプロセスの多くを自動...

AIを活用した臨床モニタリングシステムの台頭

[[355709]]現在、医療システムもさまざまな方法で人工知能の利点を取り入れています。人工知能(...

どうやってパートナーを見つけたのですか?日本のネットユーザー:国はAIを使って配信している

星野源のような容姿の人を満足させることは、実はとても簡単です。ついに国家がオブジェクトを割り当てる時...

...

視覚化と人工知能の強力な組み合わせ!

視覚化と視覚分析では、高帯域幅の視覚認識チャネルを使用してデータをグラフィック表現に変換し、インタラ...

...

マルチモーダル大規模モデルの最も包括的なレビューはここにあります!マイクロソフトの研究者7人が5つの主要トピックについて協力し、119ページの文書を公開した。

マルチモーダル大規模モデルの最も包括的なレビューはここにあります!マイクロソフトの中国人研究者7名に...

C# アルゴリズム アプリケーションでのガウス消去法の実装

C# アルゴリズム アプリケーションでガウス消去法を実装するにはどうすればよいでしょうか?工学の学習...

...

知識が求められるポストディープラーニング時代において、知識グラフをいかに効率的かつ自動的に構築できるのでしょうか?

日常生活では、情報を提示する次の 2 つの方法によく遭遇します。表示される情報量はどちらも同じですが...

...

これから起こることは避けられません。AIサイバー犯罪はすでにあなたの近くにあります

数か月前の2017 GMICカンファレンスで、ホーキング博士は再びAI脅威論を提起し、「強力なAIの...

...