AIによって書かれたコードは「手書きのコード」よりもはるかに安全性が低い

AIによって書かれたコードは「手書きのコード」よりもはるかに安全性が低い

Github Copilot のような人工知能コードアシスタントは、開発者の開発効率と生産性を大幅に向上させ、開発の技術的ハードルを下げることができます (言語や概念に精通していないプログラマーの参入)。しかし、経験の浅い開発者は AI アシスタントの出力を安易に信頼してしまい、セキュリティ上の脆弱性が生じるリスクがあります。

最近、スタンフォード大学の研究により、人工知能アシスタントを使用して書かれたコードは「手動でコード化された」コードよりもはるかに安全性が低いことが判明しました。また、人工知能ツールは、ユーザーがコードのセキュリティについて過信する原因にもなります。

また、調査では、AIアシスタントが出力するコードは「正確性」を満たしていることが多いものの、パスワードが持つべきセキュリティ特性を理解することはほとんどなく、場合によってはユーザーをうっかり混乱させるコードを作成することもあることが判明した。

この調査では、47 人の参加者が 3 つの異なるプログラミング言語 (Python、JavaScript、C) を使用して 5 つのセキュリティ関連のプログラミング タスクを実行する包括的なユーザー調査プロジェクトを設計しました。 3 つの中心的な研究質問は次のとおりです。

  • AI プログラミング アシスタントを使用すると、ユーザーは安全でないコードをより多く記述するのでしょうか?
  • ユーザーは AI アシスタントが安全なコードを書くことを信頼していますか?
  • AI アシスタントと対話する際のユーザーの言語と動作は、そのコードのセキュリティ脆弱性のレベルにどのように影響しますか?

複数の国の開発者が調査に参加しましたが、その大部分は次の 3 か国から来ています。

  • アメリカ 57%
  • 中国 15%
  • インド 13%

調査の主な結果は次のとおりです。

AIコードは5つのテストで一般的に人間のコードよりもパフォーマンスが悪い

5 種類のセキュリティ エラー テストすべて (以下を参照) において、AI アシスタントは手動コーディングよりも多くのコーディング エラーを起こし、AI アシスタントを使用する開発者の 67% が正しい解決策を提供したのに対し、「手動コーディング」コントロール グループでは 79% でした。これは、AI 支援開発への依存がセキュリティ上のミスの増加につながる可能性があることを示唆しています。

AI実験グループ(青)と手動制御グループ(黄)の5つのテストにおけるコードセキュリティエラーの割合

たとえば、SQL インジェクション脆弱性テストでは、AI アシスタントを使用した参加者は、安全性が大幅に低いソリューションを提供しました (36% 対 50%)。 AI アシスタントを使用した参加者の 36% が SQL インジェクション攻撃に対して脆弱なソリューションを作成しましたが、AI アシスタントを使用しなかったコントロール グループではわずか 7% でした。

開発者が最もよく使うプロンプトワード

開発者は通常、さまざまな戦略を使用して AI アシスタントにプロンプ​​トを出すことを選択します。開発者の 64% は直接タスク指定を試みます。開発者の 21% は AI アシスタントに関数宣言の指示を提供することを選択します (「関数を記述してください...」など)。開発者の 49% はプログラミング言語を指定します。開発者の 61% は以前のモデルによって生成されたプロンプト ワードを使用してコード アシスタントにプロンプ​​トを出します (これにより、モデルによって提供される脆弱性が強化される可能性があります)。開発者の 53% は特定の API 呼び出しに特定のライブラリを指定します。Python 開発者が関数宣言を提供することはより一般的ですが、参加者は SQL および C の質問に対してプログラミング言語を指定する可能性が高くなります。

修正提案

1. プロンプトワードを最適化します。調査では、AI を使用する開発者ユーザーの間で、言語とプロンプト パラメータの選択に大きな違いがあることがわかりました。将来のシステムでは、全体的なパフォーマンスを最適化するために、ユーザーのヒントをシステムへの入力として使用する前に、ユーザーのヒントの改善(タイプミスの修正、設計者が実装しやすいセキュリティに関する言語の組み込みなど)を検討することをお勧めします。

別のアプローチとしては、機械学習ベースの方法を検討して、ユーザープロンプトの意図(またはタスクによって生成される可能性のある特定のクラスのセキュリティ問題)を予測し、プロンプトを変更して既知の脆弱性や AI 出力から保護することが考えられます。

2. AIの主体性を減らす。安全でないコードを提供する開発者が AI アシスタントの出力を積極的に変更したり、パラメータを調整したりする可能性は低いため、AI アシスタントに過度の権限 (自動パラメータ選択など) を与えるべきではありません。そうしないと、セキュリティの脆弱性に対するユーザーの警戒が弱まる可能性があります。 AI コード アシスタントが一般的になるにつれて、これらは検討すべき重要なソリューションになります。たとえば、GitHub Copilot と統合された VS Code などの IDE では、AI アシスタントが提案したライブラリに基づいて、デフォルトの動作を調整して、ライブラリのドキュメントや使用上の警告をリアルタイムで明確に表示できます。

3. トレーニングデータを精製します。多くの AI プログラミング アシスタントは、モデルのトレーニングに GitHub 上のセキュリティ保護されていないコードを使用します。開発者は、これらの入力 (オープンソース コード) に対して静的分析ツールを実行し、トレーニングにはセキュリティ チェックに合格した入力 (コード) のみを使用し、ライブラリ ドキュメントと「エキスパート」コード例を使用してトレーニング前にデータセット全体の重み付けを再調整するよりスマートな方法を設計する必要があります。これにより、データのセキュリティが大幅に向上します。

結論は

AI アシスタントを使用してコードを作成する開発者は、ほとんどのプログラミング タスクでセキュリティ上の脆弱性を導入する可能性が高くなります。さらに、AI アシスタントに問い合わせる際に使用するクエリワードが具体的であればあるほど (ヘルプ機能の提供やパラメータの調整など)、生成されるコードはより安全になります。


<<:  AIが労働力に与える影響について考えられる3つのシナリオ

>>:  清華大学系のスタートアップが、実際のシーンからアニメーションへのワンクリック変換、パーソナライズされたキャラクターも生成できる世界初の4Dスケルトンアニメーションフレームワークを発表

ブログ    
ブログ    

推薦する

...

AI「メンター」がハーバード大学に入学! CS コースの 7x24 時間の個別指導、RAG は AI 教育のパズルの最後のピースになるかもしれない

昨年、ハーバード大学は大きなことを成し遂げました。彼らは CS50 コースに AI ツールの完全なセ...

機械学習におけるパラメトリック手法とノンパラメトリック手法

導入前回の記事では、統計学習における予測と推論の違いを紹介しました。これら 2 つの方法の主な違いは...

...

人工知能は実体経済の強化を加速させる

[[258853]]人工知能は今年の全国人民代表大会で注目の話題の一つとなった。多くの代表者や議員は...

マイクロソフトとグーグルのAIジレンマ:お金を稼ぐにはもっとお金を使う必要がある

7月26日のニュースによると、将来、人工知能はマイクロソフトやアルファベットなどのテクノロジー大手に...

App Storeのランキングアルゴリズムの変更、開発者は準備が必要

[[80451]]数日前、AppleのApp Storeの検索アルゴリズムが変わり始めたかもしれない...

AGVロボットマルチエージェント経路探索の4つの主要な研究方向

マルチエージェント経路探索 (MAPF) は、人工知能、ロボット工学、理論計算機科学、実践的オペレー...

スマートインフラがコミュニティを良くする5つの方法

フロスト&サリバンによる最近の分析によると、スマートシティ技術への世界的な投資は2025年までに22...

...

COVID-19パンデミックは不動産業界のインテリジェントな変革とアップグレードを加速させた

[[342701]] スマートホーム革命はかなり前から本格化しています。住宅所有者はデータと IoT...

...

OpenAIは10月に開発された画像生成器DALL-E 3の新バージョンをリリースした。

OpenAIは9月21日水曜日、書かれたプロンプトに基づいて画像を生成できる新しい画像生成器DAL...

郭光昌:医療人工知能支援システムの構築を加速

医療人工知能支援システムの構築加速に関する提案中国人民政治協商会議第12期全国委員会委員 郭光昌【提...

顔認識技術は議論を呼んでいる。人工知能はどのように制御されるべきか?

[[264511]]最近、米国の18歳の大学生が、アップルが顔認識ソフトウェアを使用して彼を強盗と...