物体検出と注釈の時代は終わったのでしょうか?

物体検出と注釈の時代は終わったのでしょうか?

急速に進化する機械学習の分野では、データのラベル付けという面倒で時間のかかる作業が依然として存在しています。画像分類、オブジェクト検出、セマンティックセグメンテーションのいずれの場合でも、手動でラベル付けされたデータセットは長い間、教師あり学習の基礎となってきました。

しかし、AutoDistill と呼ばれる革新的なツールのおかげで、状況はすぐに変わるかもしれません。

Github コード リンクは次のとおりです: https://github.com/autodistill/autodistill?source=post_page。

AutoDistill は、教師あり学習のプロセスに革命を起こすことを目的とした画期的なオープンソース プロジェクトです。このツールは、大規模で低速なベースモデルを活用して、より小型で高速な教師ありモデルをトレーニングし、ユーザーがラベルなし画像から直接、人間の介入なしにエッジで実行されるカスタムモデルの推論を実行できるようにします。

AutoDistill はどのように機能しますか?

AutoDistill の使用は、その機能と同じくらいシンプルかつ強力です。まず、ラベルのないデータがベースモデルに入力されます。次に、ベース モデルはオントロジーを使用して、ターゲット モデルをトレーニングするためのデータセットに注釈を付けます。出力は、特定のタスクを実行するように設計された精製モデルです。

これらのコンポーネントについて説明しましょう。

  • ベースモデル: ベースモデルは、Grounding DINO などの大型ベースモデルです。これらのモデルはマルチモーダルであることが多く、多くのタスクを実行できますが、多くの場合、サイズが大きく、遅く、高価です。
  • オントロジー: オントロジーは、ベース モデルにプロンプ​​トを出す方法、データセットのコンテンツの説明、およびターゲット モデルが予測する内容を定義します。
  • データセット: これは、ターゲット モデルのトレーニングに使用できる、自動的にラベル付けされたデータのセットです。データセットは、ラベルのない入力データとオントロジーを使用して基本モデルによって生成されます。
  • ターゲット モデル: ターゲット モデルは、データセットを消費し、デプロイメント用の精製モデルを出力する教師ありモデルです。ターゲット モデルの例としては、YOLO、DETR などが挙げられます。
  • 蒸留モデル: これは AutoDistill プロセスの最終出力です。これはタスクに合わせて微調整された重みのセットであり、予測を取得するために使用できます。

AutoDistill の使いやすさは実に驚くべきものです。ラベル付けされていない入力データを Grounding DINO などの基本モデルに渡し、オントロジーを使用してデータセットにラベルを付けてターゲット モデルをトレーニングすると、最終結果として、特定のタスクに合わせて高速化、精製、微調整されたモデルが生成されます。

このプロセスが実際にどのように行われているかは、ビデオでご覧いただけます: https://youtu.be/gKTYMfwPo4M

AutoDistillの影響

注釈付けに必要な膨大な手作業は、コンピューター ビジョンの広範な導入を妨げる主な障害の 1 つでした。 AutoDistill はこの障害を克服するための重要な一歩を踏み出しました。このツールの基盤となるモデルは、多くの一般的なユースケースのデータセットを自律的に作成することができ、創造的なプロンプトと少量学習を通じてその有用性を拡大する可能性があります。

しかし、これらの進歩は素晴らしいものですが、ラベル付けされたデータが不要になったことを意味するものではありません。基礎となるモデルが改良され続けると、注釈付けのプロセスにおいて人間を置き換えたり、補完したりできるようになるでしょう。しかし、現時点では、ある程度の手動による注釈付けはまだ必要です。

物体検出の未来

研究者が物体検出アルゴリズムの精度と効率を継続的に改善するにつれて、それがより広範囲の現実世界のアプリケーションに適用されるようになると期待されます。たとえば、リアルタイムの物体検出は、自動運転、監視システム、スポーツ分析などの分野で数多くの応用がある重要な研究分野です。

もう一つの難しい研究分野は、ビデオ内のオブジェクト検出です。これには、複数のフレームにわたってオブジェクトを追跡し、モーションブラーに対処することが含まれます。これらの分野での発展により、物体検出の新たな可能性が開かれ、AutoDistill のようなツールの可能性がさらに実証されるでしょう。

結論は

AutoDistill は機械学習の分野におけるエキサイティングな進歩を表しています。このツールは、基本モデルを使用して教師ありモデルをトレーニングすることで、データのラベル付けという面倒な作業が機械学習モデルの開発と展開のボトルネックではなくなる未来への道を開きます。

<<: 

>>:  北京大学と智遠は、大規模モデルが自律的にオープンワールドを探索できるようにするトレーニングフレームワークLLaMA-Riderを提案した。

ブログ    
ブログ    

推薦する

...

3つの側面での共同の取り組みにより、人工知能はスマート交通の発展に貢献します。

[[442361]]都市化の継続的な進展と自動車保有数の急速な増加により、我が国の交通発展は困難な...

中学校の知識を使って機械学習が何をしているのかを理解する方法

[[333000]]序文Baidu 百科事典で「機械学習」を検索すると、私が決して到達できないレベル...

中国航空工業集団の「ドラゴンネスト」の初飛行は、電力検査のインテリジェント時代の幕開けを告げる

最近、北京市南六環路の北京延尊物流園区付近の安坊線70号塔の下で、中飛Avi Dragon Nest...

スマートオフィス管理におけるAIの役割

スマート オフィスの概念は新しいものではありませんが、企業のオーナーや管理者が自動化の生産性の価値を...

Meta が言語認識システムをオープンソース化、6 言語でのリップ リーディング翻訳モデル認識、誰でもローカル展開可能

今年初めにネットで人気を博した反ギャングドラマ「光弗」をまだ覚えているだろうか。最後の数話で監督がス...

...

サイバーセキュリティを変える、最もホットなハッカーツール:武器化された人工知能FraudGPT

FraudGPT の「成功」は、生成 AI の武器化とハッキング技術の民主化という危険な時代の到来...

機械学習初心者からマスターまで

序文振り返ってみると、Coursera で Andrew Ng が教えている機械学習コースから多くの...

医療製造におけるビジョンテクノロジー

現代医学の世界では、大きな役割を果たす小さな成分が 1 つあります。この成分は、血管造影などの処置中...

...

...

27回の機械学習インタビューの後、重要な概念を強調しましょう

機械学習面接のためのハンドブック。これだけあれば十分です。 [[348502]]機械学習やデータサイ...

ロボット兵士はもはやSFではない

ロボット兵士はまもなく現実のものとなり、戦争作戦の遂行において人間の兵士を支援し、負傷した兵士に医療...

DeepMindの創設者はチューリングテストを覆したい!外国人男性がAIを使って90日間で3万ドルを稼いだ

チューリングテストは時代遅れですか? DeepMind の創設者 Mustafa Suleyman ...