物体検出と注釈の時代は終わったのでしょうか?

物体検出と注釈の時代は終わったのでしょうか?

急速に進化する機械学習の分野では、データのラベル付けという面倒で時間のかかる作業が依然として存在しています。画像分類、オブジェクト検出、セマンティックセグメンテーションのいずれの場合でも、手動でラベル付けされたデータセットは長い間、教師あり学習の基礎となってきました。

しかし、AutoDistill と呼ばれる革新的なツールのおかげで、状況はすぐに変わるかもしれません。

Github コード リンクは次のとおりです: https://github.com/autodistill/autodistill?source=post_page。

AutoDistill は、教師あり学習のプロセスに革命を起こすことを目的とした画期的なオープンソース プロジェクトです。このツールは、大規模で低速なベースモデルを活用して、より小型で高速な教師ありモデルをトレーニングし、ユーザーがラベルなし画像から直接、人間の介入なしにエッジで実行されるカスタムモデルの推論を実行できるようにします。

AutoDistill はどのように機能しますか?

AutoDistill の使用は、その機能と同じくらいシンプルかつ強力です。まず、ラベルのないデータがベースモデルに入力されます。次に、ベース モデルはオントロジーを使用して、ターゲット モデルをトレーニングするためのデータセットに注釈を付けます。出力は、特定のタスクを実行するように設計された精製モデルです。

これらのコンポーネントについて説明しましょう。

  • ベースモデル: ベースモデルは、Grounding DINO などの大型ベースモデルです。これらのモデルはマルチモーダルであることが多く、多くのタスクを実行できますが、多くの場合、サイズが大きく、遅く、高価です。
  • オントロジー: オントロジーは、ベース モデルにプロンプ​​トを出す方法、データセットのコンテンツの説明、およびターゲット モデルが予測する内容を定義します。
  • データセット: これは、ターゲット モデルのトレーニングに使用できる、自動的にラベル付けされたデータのセットです。データセットは、ラベルのない入力データとオントロジーを使用して基本モデルによって生成されます。
  • ターゲット モデル: ターゲット モデルは、データセットを消費し、デプロイメント用の精製モデルを出力する教師ありモデルです。ターゲット モデルの例としては、YOLO、DETR などが挙げられます。
  • 蒸留モデル: これは AutoDistill プロセスの最終出力です。これはタスクに合わせて微調整された重みのセットであり、予測を取得するために使用できます。

AutoDistill の使いやすさは実に驚くべきものです。ラベル付けされていない入力データを Grounding DINO などの基本モデルに渡し、オントロジーを使用してデータセットにラベルを付けてターゲット モデルをトレーニングすると、最終結果として、特定のタスクに合わせて高速化、精製、微調整されたモデルが生成されます。

このプロセスが実際にどのように行われているかは、ビデオでご覧いただけます: https://youtu.be/gKTYMfwPo4M

AutoDistillの影響

注釈付けに必要な膨大な手作業は、コンピューター ビジョンの広範な導入を妨げる主な障害の 1 つでした。 AutoDistill はこの障害を克服するための重要な一歩を踏み出しました。このツールの基盤となるモデルは、多くの一般的なユースケースのデータセットを自律的に作成することができ、創造的なプロンプトと少量学習を通じてその有用性を拡大する可能性があります。

しかし、これらの進歩は素晴らしいものですが、ラベル付けされたデータが不要になったことを意味するものではありません。基礎となるモデルが改良され続けると、注釈付けのプロセスにおいて人間を置き換えたり、補完したりできるようになるでしょう。しかし、現時点では、ある程度の手動による注釈付けはまだ必要です。

物体検出の未来

研究者が物体検出アルゴリズムの精度と効率を継続的に改善するにつれて、それがより広範囲の現実世界のアプリケーションに適用されるようになると期待されます。たとえば、リアルタイムの物体検出は、自動運転、監視システム、スポーツ分析などの分野で数多くの応用がある重要な研究分野です。

もう一つの難しい研究分野は、ビデオ内のオブジェクト検出です。これには、複数のフレームにわたってオブジェクトを追跡し、モーションブラーに対処することが含まれます。これらの分野での発展により、物体検出の新たな可能性が開かれ、AutoDistill のようなツールの可能性がさらに実証されるでしょう。

結論は

AutoDistill は機械学習の分野におけるエキサイティングな進歩を表しています。このツールは、基本モデルを使用して教師ありモデルをトレーニングすることで、データのラベル付けという面倒な作業が機械学習モデルの開発と展開のボトルネックではなくなる未来への道を開きます。

<<: 

>>:  北京大学と智遠は、大規模モデルが自律的にオープンワールドを探索できるようにするトレーニングフレームワークLLaMA-Riderを提案した。

ブログ    
ブログ    
ブログ    

推薦する

空中戦における人工知能の応用

現在、世界中の軍隊が AI を活用した防衛システムの実験を始めています。 AIを完全に理解して既存の...

人工知能技術は、ビルインターホン業界の発展における主流技術の一つとなっている。

現在、人工知能、ビッグデータ、顔認識技術、クラウドコンピューティングなどの新技術が急速に発展し、産業...

機械が壁の建設を手伝うことがなぜそんなに難しいのでしょうか?これは人類の100年にわたる闘争の歴史である

[[418716]]建築の問題を研究すると、ほぼすべての「新しい」アイデアが、おそらく何十年も前に何...

...

連合転移学習の最新の進歩: 計算と転送はモデルのパフォーマンスをどのように「制限」するのでしょうか?

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

AIによる顔の変形の背後にある技術的な戦い

[[275567]]週末に集中的に流行した後、顔を変えるソフトウェアZAOの人気はようやく落ち着きを...

機械は倫理的な判断を下せるのか?

ロボットや機械が下す決定は必ずしも道徳的に正しいとは限りません。テクノロジー企業が機械倫理に注目する...

室温超伝導の続編はあるのでしょうか?中国チームはLK-99がマイスナー効果を持つ可能性があることを再び証明し、論文がアップロードされたばかりである。

室温超伝導に関する論文が、再びインターネット上でちょっとした騒動を引き起こした。最近の論文で、著者ら...

AI業界は大きな変化を遂げています。AI科学者がMVPになるには

20 年前、人工知能の研究に興味を持つ人は、主に大学や非営利の AI 研究所に限られていました。 A...

自動運転自転車が発売されました。これを見た後ではもう運転したくありません!ホットカミング

Google Bikeが先行販売を開始しました。まだ自転車に乗りたいかなんて聞くまでもありません。車...

AIとソフトウェアが5Gデータセンターの変革を推進する方法

私たちはコンピューティングにおける革新の大きな段階を目撃しています。急速に加速する世界的な 5G 展...

Googleの華博士がICCV2021で新モデルを発表、卵を泡立てるだけでパンケーキを作りたいかどうかがわかる

機械学習モデルが現実世界でますます使用され、導入されるようになると、AI の意思決定は人々の日常生活...

百度の女性デーのポスターはスマートライフの姿を描いている:人工知能は女性をより自由にする

社会の進歩と国民の意識の高まりに伴い、社会全体が女性の権利にますます注目するようになっています。 3...

データ駆動型パーソナライゼーションの時代: AI と ML がデータの読み取りと理解の方法をどのように変えているのか

今日のビジネスはデータとデータに基づく理解によって支配されています。データをどのように理解し、それを...