GPT-3 ハイパーパラメータは単一の GPU で解決できます。まず小さなモデルをトレーニングし、ワンクリックで移行します

GPT-3 ハイパーパラメータは単一の GPU で解決できます。まず小さなモデルをトレーニングし、ワンクリックで移行します

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

いやいや、状況は変わったんだ。

大規模モデルのハイパーパラメータを単一の GPU で調整することは完全に可能です。

なんと言えばいいでしょうか?

パラメータを調整する新しい方法を発見した人がいることが判明しました。モデルの規模がどう変化しても、得られる最適なハイパーパラメータは安定したパフォーマンスを維持できます。

これにより、最初にモデルの小さなバージョンをトレーニングし、その上でハイパーパラメータを間接的に調整し、ゼロショット方式でそれらをフルサイズのモデルに直接コピーして、非常に優れたパフォーマンスを実現できます。

これは、十分な GPU リソースがない人にとって最適です。

現在、関連投稿はRedditでも白熱した議論を巻き起こし、300件以上の「いいね!」を獲得している。

単一の GPU 上で大規模な GPT-3 モデルをチューニングする

この方法はmuPと呼ばれています  (最大更新パラメータ化)、著者はそれぞれMicrosoft と OpenAIに所属しています。

アイデアはシンプルで、以前の研究で発見された µP と呼ばれる特殊なパラメータ化を使用します。

ナローニューラルネットワークとワイドニューラルネットワークは、幅が無限大 (width->∞) の場合でも、同じ最適なハイパーパラメータのセットを共有します。

具体的な原理については、論文「無限幅ニューラル ネットワークにおける特徴学習」を参照してください。

共有できるハイパーパラメータには、学習率、学習率スケジュール、初期化、パラメータ乗数などが含まれ、パラメータテンソルごとに個別に共有することもできます。

著者は、最大 4096 の幅を持つTransformer と ResNetでこの結論を検証しました。

したがって、リソースが乏しい錬金術師は、単一の GPU 上で GPT-3 モデルの小さなバージョンに対してハイパーパラメータの調整を実行できます。

この小さなモデルで得られたパラメータが最適に近い場合、大きなモデルでも同じ結果が得られます。

ps. このパラメータ調整方法は「 µTransfer 」とも呼ばれます。

具体的な効果は何ですか?

著者は、わずか4,000 万のパラメータを持つ小さな GPT-3 をトレーニングしました。これは、GPU 上で直接実行できるほど小さいものです。

その後、そのハイパーパラメータは67 億のパラメータを持つ大規模な GPT-3 に「µ 転送」され、元の GPT-3 のパラメータ スケールが 2 倍であったにもかかわらず、そのパフォーマンスは元の GPT-3 と完全に匹敵することがわかりました。

そして、この調整コストは、事前トレーニング全体のコストのわずか 7% を占めます。

モデルのサイズが大きくなっても、小さなモデルを直接調整するコストはほぼ同じままです。この方法を使用して GPT-3 の 175 億個のパラメータを調整する場合、コストは最大で事前トレーニングの総コストの 0.3% になる可能性があります。

さて、ここで疑問に思うかもしれません。「モデルの幅を狭めればいいのでしょうか?」

著者は、「幅のないもの」については理論的な保証はないと述べています。

しかし、良いニュースは、深度、バッチ サイズ、シーケンス長、およびタイム ステップの移行効果を、preLN Transformer の妥当な範囲内でテストしたことです。

その中で、BERT-base と BERT-large の幅と深さを同じサイズに縮小し、同時にハイパーパラメータを調整したところ、次のことがわかりました。

すでに調整済みの megatron BERT ベースラインと比較すると、両方のパフォーマンスが向上しており、特にBERT-large のパフォーマンスが向上しています。

これによって次のような結論も導かれます。

移行するモデルの規模が大きいほど、メリットは大きくなります。

そこで著者は、GPT-3 を 175 億の規模でテストしたわけではないが、その結果は「よだれが出るほど」になることを保証すると冗談を言った。

ここまで述べてきましたが、どうすればそれを達成できるのでしょうか?

次の表は、ファンインまたはファンアウトによってモデルの初期化と学習率を調整する方法をまとめたものです。

ピンク色のテキストは µP で、括弧内の灰色のテキストは pytorch のデフォルトです。

もちろん、手動でやりたくない場合は、著者がオープンソース化した Pytorch 実装も公開しており、pip install mup でモデルに適用できます。

著者について

第一著者は、マイクロソフトの上級研究員である Greg Yang 氏です。

責任著者は、Microsoft Research の Deep Learning Technology Center のパートナー研究マネージャーであり、IEEE フェローでもある Jianfeng Gao です。

著者は中国人の 2 名、劉暁東 (北京郵電大学卒業生) とマイクロソフトの陳偉珠です。   (マイクロソフトに16年間勤務)。

彼らの研究結果はNeurIPS 2021に採択されました。

GitHub リンク:
​​https://github.com/microsoft/mup​​

論文の宛先:
​​https://arxiv.org/abs/2203.03466​​

公式ブログリンク:
​​https://www.microsoft.com/en-us/research/blog/%C2%B5transfer-a-technique-for-hyperparameter-tuning-of-enormous-neural-networks/​​

Reddit の議論:
​​https://www.reddit.com/r/MachineLearning/comments/tb0jm6/r_you_cant_train_gpt3_on_a_single_gpu_but_you_can/​​

<<:  テンセントの古い写真修復アルゴリズムはオープンソースで、髪の毛まで詳細に再現されており、3つの事前トレーニング済みモデルがダウンロード可能

>>:  TransformerはAI分野を支配するのでしょうか?結論を出すのは時期尚早だ

ブログ    
ブログ    
ブログ    

推薦する

...

ASO チュートリアル: 評価とダウンロードの最適化と Google Play ストアのランキング アルゴリズム

この ASO チュートリアル シリーズを初めて読む場合は、最初の記事から始めることをお勧めします。 ...

人工知能の根幹技術を徹底的に分析

AIチップ・AIフレームワークの代表的企業コンピューティングアルゴリズムの重要な基盤として、人工知能...

...

ソフトウェア開発プロセスは、路上でのスマートカーの安全な運行を保証するものである。

2021年に入り、自動車の道路事故率を減らし、運転プロセスの快適性を向上させる先進運転支援システム...

...

今後 10 年間で 21 の新しい仕事が生まれます。あなたに何ができるか見てみましょう。

[[242467]]現在観察できるマクロ経済、政治、人口、社会、文化、ビジネス、テクノロジーの一般...

李開復:人工知能に取って代わるのが最も難しい10の仕事

[[246854]]私の意見では、警告、悲観、パニックはすべて「廬山の本当の顔を知らない」根拠のない...

...

...

5つの重要なステップ!ディープラーニングモデルを構築するにはどうすればいいですか?

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...

DeepMind、ロボットの物体積み重ね能力を向上させるための新たなベンチマークを提案

ほとんどの人にとって、あるオブジェクトを別のオブジェクトの上に重ねることは簡単な作業です。しかし、最...

...