現在、大規模言語モデル (LLM) は、特にいくつかの例と中間ステップが与えられた場合に、推論タスクにおいて優れた能力を発揮します。しかし、プロンプト方式は LLM の暗黙の知識に依存することがよくあります。暗黙の知識が間違っていたり、タスクと一致していない場合、LLM は間違った回答を出します。 現在、Google、Mila Institute、その他の研究機関の研究者らが共同で新しい手法を研究しており、LLM が推論ルールを学習できるようにし、Hypotheses-to-Theories (HtT) と呼ばれる新しいフレームワークを提案しています。この新しい方法は、多段階の推論を改善するだけでなく、説明可能で転送可能であるという利点もあります。 論文アドレス: https://arxiv.org/abs/2310.07064 数値推論と関係推論の問題に関する実験では、HtT によって既存のプロンプト メソッドが改善され、精度が 11 ~ 27% 向上することが示されています。学習したルールは、異なるモデルや同じ問題の異なる形式に転送することもできます。 方法の紹介一般に、HtT フレームワークは、従来の機械学習のトレーニング フェーズとテスト フェーズに似た、帰納フェーズと演繹フェーズの 2 つのフェーズで構成されます。 導入フェーズでは、まず LLM に一連のトレーニング例に基づいてルールを生成し、検証するように求められます。本研究では、CoTを用いてルールを宣言して回答を導き出し、ルールの頻度と正確性を判断し、頻繁に出現して正解につながるルールを収集してルールベースを形成します。 適切なルール ベースができたら、次のステップは、これらのルールを適用して問題を解決する方法を学ぶことです。この目的のために、本研究では演繹フェーズでプロンプトにルールベースを追加し、LLM がルールベースからルールを取得して演繹を実行し、暗黙的推論を明示的推論に変換することを要求します。 しかし、この研究では、非常に強力な LLM (GPT-4 など) でも、すべてのステップで正しいルールを取得するのが難しいことがわかりました。この目的のために、本研究では、LLM のコンテキスト検索機能を強化する XML タグ付けトリックを開発しました。 実験結果HtT を評価するために、この研究では 2 つの多段階推論問題をベンチマークしました。実験結果は、HtT が少数ショットプロンプト法を改善することを示しています。著者らは、HtT をより包括的に理解するために、広範囲にわたるアブレーション研究も実施しました。 彼らは数値推論と関係推論の問題で新しい方法を評価します。数値推論では、GPT-4 と比較して精度が 21.0% 向上したことがわかりました。関係推論では、GPT-4 は精度が 13.7% 向上し、GPT-3.5 はさらに向上してパフォーマンスが 2 倍になりました。パフォーマンスの向上は主にルールの錯覚の減少から生まれます。 具体的には、以下の表 1 は、算術の基数 16、基数 11、基数 9 のデータセットの結果を示しています。すべての基本システムの中で、0 ショット CoT は両方の LLM でパフォーマンスが最も悪いです。 表 2 は、CLUTRR におけるさまざまな方法を比較した結果を示しています。 GPT3.5 と GPT4 では、0 ショット CoT のパフォーマンスが最も悪いことがわかります。少数ショットのヒント手法では、CoT と LtM は同様のパフォーマンスを示します。平均精度に関しては、HtT は両モデルのヒント方式を 11.1 ~ 27.2% 上回りました。 GPT3.5 は CLUTRR ルールの取得が悪くなく、GPT4 よりも HtT の恩恵を受けていることは注目に値します。これは、CLUTRR のルールが算術よりも少ないためである可能性があります。 GPT4 のルールを使用すると、GPT3.5 の CoT パフォーマンスが 27.2% 向上し、これは CoT パフォーマンスの 2 倍以上となり、GPT4 の CoT パフォーマンスに近づくことは注目に値します。したがって、著者らは、HtT が強い LLM から弱い LLM への知識蒸留の新しい形式として機能できると考えています。 表 3 は、HtT が GPT-4 (テキスト バージョン) のパフォーマンスを大幅に向上させることを示しています。 GPT3.5 では、テキスト入力を処理するときに幻覚ルール以外のエラーが発生することが多いため、この改善は重要ではありません。 |
>>: GPU の無駄遣いをやめよう: FlashAttention がアップグレードされ、長いテキストの推論速度が 8 倍に向上
8月28日、国家エネルギー音声の公式WeChatアカウントによると、龍源電力工程技術有限公司は最近、...
ソフトウェアの熟練度は「ツール」の範疇に入るため、主にポートフォリオで対外的に証明するデザイナーにと...
会話エージェントから検索クエリまで、自然言語理解 (NLP) は今日の最もエキサイティングなテクノロ...
[[409974]]過去 2 年間で、コンピューター ビジョンの分野では 2 つの大きな変革が起こ...
1. AIGCからAIGAへAIGC は AI によって生成されたコンテンツを指し、すでに広く理解さ...
[[409268]] [51CTO.com クイック翻訳]人工知能は万能の機械として描かれることが多...
オープンソースは技術革新と急速な発展の中核です。この投稿では、Python 機械学習のオープンソース...
[[388165]]将来は自動化となり、人工知能 (AI) とモノのインターネット (IoT) が融...
[[323595]]機械学習とディープラーニングのアルゴリズムは、脳内のニューロンを結びつけるシナプ...
[[422303]]人工知能(AI)は、かなり長い間、世界中のビジネスにおいて安定した存在となってい...
いくつかの指標によれば、生成的敵対的ネットワーク (GAN) の研究は過去 2 年間で大きな進歩を遂...
[[441326]]リンクリストの交差LeetCode の問題へのリンク: https://leet...
人工知能 (AI) と機械学習 (ML) が組織全体に導入されるケースが増えるにつれ、最も大きなビジ...