AI革命はネットゼロデータセンターを終わらせるか?

AI革命はネットゼロデータセンターを終わらせるか?

データセンターは現代生活に欠かせないものです。あらゆるものがインターネットでつながっているこの時代において、インターネットは私たちの経済と自律性の基盤となり、いつでもどこでもアプリケーションやデータにアクセスできるようにして、私たちの生活や余暇体験を豊かにします。

これらの施設は重要であるにもかかわらず、あまり理解されていません。しかし、最近ではデータセンターに注目する人も増え、データセンターに対する意見も出始めています。

データセンターが環境に与える影響については多くの議論が行われています。たとえば、気候危機に関して言えば、データセンターは多くの注目を集めたいだけなので、必ずしもメディアでよく取り上げられるわけではありません。

エネルギー消費量をある程度の確実性を持って定量化することはほぼ不可能ですが、専門家は、データセンターが世界中で生成される全電力の約 1% を消費していると推定しています。それはそれほど誇張された話ではないように聞こえますが、残りの 99% によって動かされている他の何百万もの事柄について考えてみてください。

さらに重要なのは、エネルギー源も考慮する必要があることです。それは化石燃料ですか、それとも再生可能エネルギーから来ているのでしょうか?

データセンターは冷却のために大量の水を必要とするため、「冷却」も注目の話題です。ただし、データセンターの規模が異なるため、正確な数値を示すことは困難です。しかし、一般的なデータセンターでは 1 日あたり約 300 万〜 500 万ガロンの水が使用されているという見解は一致しています。この水は通常、地元の水源から取水され、近隣のコミュニティにも供給されます。

温室効果ガスの排出、熱の無駄、レガシー機器の廃棄などの要因を考慮すると、世論がデータセンターを望ましくない施設と見なすのも不思議ではありません。

データセンターの二酸化炭素排出量を増加させるもう一つの新たな要因は、特に人工知能 (AI) の人気の高まりに伴うデータセンターの需要の増加です。

人工知能は、「従来の」アプリケーションに比べて計算負荷がはるかに高くなります。 ChatGPT や Bard のような生成 AI アプリケーションが使用されるたびに、Google での標準的な検索クエリの約 50 ~ 100 倍のエネルギーが消費されます。さらに、大規模な言語モデルのトレーニングには大量のリソースが必要となり、最大 1,287 メガワット時の電力を消費し、500 トンを超える炭素が発生します。

この電力増加の需要は、ますます複雑化するアルゴリズムや計算を処理する必要性、データストレージとアクセスの増加、より強力なグラフィックス処理装置 (GPU) とテンソル処理装置 (TPU) の導入など、より多くのエネルギーを必要とするさまざまな要因の組み合わせの結果です。

AI革命以前にネットゼロデータセンターが実現不可能だったとしたら、今はもう不可能なのでしょうか?

データセンターをクリーンかつグリーンにすることは可能でしょうか?

グーグルやマイクロソフトなどの大企業を含む企業は長年にわたり、データセンターの環境への影響を削減する取り組みを行ってきました。例えば、マイクロソフトの月面着陸計画「プロジェクト・ナティック」や、2030年までに水資源の積極的活用を実現するというグーグルの取り組みなどです。

しかし、こうした壮大なビジョンにもかかわらず、今私たちにできることはあるのでしょうか?

まず、技術の進化という要素があります。ハードウェアとソフトウェアの驚異的な革新と進歩が絶えず起こっています。これにより、サーバーの効率が向上し、重要でないアプリケーションのスリープ状態のよりスマートな管理を含む電力節約能力が向上し、回復力と安定性が向上し、汚染を引き起こすバックアップ発電機が不要になります。

一方、業界は、レガシーハードウェアや冗長ハードウェアのリサイクルについてより賢明になる必要がありますが、その中に機密データが保存されていることを考えると、これは困難な場合が多くあります。

データ センターの設計も、内部、外部、中央の場所によって影響を受ける炭素排出量の削減に重要な役割を果たします。循環型アプローチを採用し、持続可能な材料を使用し、クリーンなエネルギーと水への十分なアクセスを確保する必要があります。

再生可能エネルギー源からのクリーンエネルギーは、データセンターのネットゼロ排出を達成するための最も重要な要素です。電力網から安定的かつ確実に電力を得ることができれば素晴らしいでしょう。しかし将来的には、データセンターが独自の独立したオフグリッド電源を備え、純粋なグリーン電力を確保し、近隣のコミュニティへの電力供給への悪影響を軽減する可能性があります。

いくつかの施設では、施設の電力供給に燃料電池を使用するという大胆な措置を講じています。理想的には、これらのセルは水素で駆動されることになります。 「グリーン水素」はまだ大規模には利用できないが、ガスで動く燃料電池は利用可能だ。使用するガスの種類に応じて、温室効果ガスの削減、窒素酸化物の排出、騒音公害の削減にも役立ちます。まさに都心部や住宅地周辺の敷地に最適なソリューションです。

さらに、オフグリッド電力を使用することで、業界にとってのもう 1 つの利点は、センターをグリッドに接続するには時間がかかるため、実装がより迅速になり、市場投入までの時間が短縮されることです。これは、忍耐力で知られる業界ではありません。

データ センターを冷却するとなると、一般的な見解に疑問を投げかける必要もあります。冷却空気が最善の冷却ソリューションなのでしょうか?

液体冷却は、IBM System 360 などの初期のメインフレームやスーパーコンピュータでは普及していましたが、その後数十年で段階的に廃止されました。しかし、ここ数年、単相および二相浸漬冷却、コールドプレート冷却、リアドアクーラーなど、さまざまな形式の冷却が復活しています。

これらすべてのアプローチにより、最大 98% の熱回収が可能になり、これに伴い燃料電池からの熱の再利用の品質も向上します。

覚えておいてください、この熱は本質的に廃棄物であり、暖房に再利用したり、都市農業にエネルギーを提供したり、さらには地域暖房システムに追加したり、エネルギー変換前にバイオマスを乾燥したりすることができます。すべての業界と同様に、浸漬媒体流体に、地元の水や土壌を汚染する可能性のある PFAS (永久的) 化学物質が含まれていないことを注意深く確認する必要があることに留意することが重要です。

したがって、AI の圧力の有無にかかわらず、業界がネットゼロのデータセンター施設を構築するために実行できる手順があります。

<<:  英国の反トラスト規制当局は、低性能のAIシステムの拡散を防ぐためのAI規制原則を策定した。

>>:  34B パラメータが GPT-4 を上回ります! 「数学的普遍モデル」MAmmoTH オープンソース: 平均精度が最大 29% 向上

ブログ    

推薦する

マルウェア検出のための機械学習

[[188537]] 1. はじめに機械学習は、コンピュータにデータから学習する能力を与え、現在イ...

自動運転テストが重要なのはなぜですか?米国と比較して、中国には4つの大きな利点がある

交通・自動車業界の変革の主流として、自動運転技術の開発は初期の成熟段階に入り、多くの企業が大規模なテ...

10億件の速達配送のピークを迎える中、Baidu OCRが物流企業のスピードアップにどのように貢献しているかをご覧ください。

ダブル11の大割引が戻ってきました。新規のお客様が最初に購入できる厳選商品...速達便のビジネスプロ...

NVIDIA DLSS 3.5 がリリースされました!新しいAI「光再構成」は超リアルな光と影を実現し、新旧両方のグラフィックカードでサポートされています。

人工知能は世界を変えており、グラフィックス コンピューティングも例外ではありません。 5 年前、NV...

機械学習アルゴリズムを使用して「実験室地震」を予測するにはどうすればよいでしょうか?

[[186458]]機械学習アルゴリズムが「実験室の地震」を予測できるという事実は、間違いなく画期...

法律、AIが革命を起こすもう一つの業界

[[270591]]弁護士は、法律知識、鋭敏な時間管理、説得力、雄弁さなど、多くのスキルを身につけて...

McKinsey AI Notes: 19 の業界における 400 を超える人工知能の使用事例を解読すると、1 兆ドルの価値はどこにあるのか?

[[229251]]最近、マッキンゼーは、人工知能が分析技術の年間価値の40%を占め、毎年3.5兆...

データセキュリティの向上における人工知能の役割

現在、コンピューティング能力、ストレージ容量、データ収集能力の急速な向上により、人工知能はさまざまな...

一貫性のあるハッシュを使用して重要な負荷を分散する

大規模なネットワーク サービス (コンテンツ ホスティングなど) を実行するには、各サーバーが過負荷...

フォーブス誌の2020年AIに関するトップ10予測: 人工知能はますます「疎外」されつつある

人工知能 (AI) は間違いなく 2010 年代のテクノロジーのテーマであり、新しい 10 年が始ま...

MobileSAM: モバイルデバイスに高いパフォーマンスをもたらす軽量の画像セグメンテーションモデル

1. はじめにモバイルデバイスの普及とコンピューティング能力の向上により、画像セグメンテーション技術...

産業用ロボットとは何ですか?

産業用ロボットとは何ですか?工業生産で使用される産業用ロボットには、溶接ロボット、研削・研磨ロボット...

PaddlePaddle を使用してオブジェクト検出タスクを実装する - Paddle Fluid v1.1 の詳細なレビュー

【51CTO.comオリジナル記事】 1. はじめに11月1日、BaiduはPaddle Fluid...

ジェネレーティブAIがヘルスケアを変える

生成 AI はヘルスケア分野で重要な役割を果たしており、その応用は医療業界に多くの変化をもたらしまし...

27回の機械学習インタビューの後、重要な概念を強調しましょう

機械学習面接のためのハンドブック。これだけあれば十分です。 [[348502]]機械学習やデータサイ...