TensorFlow については、機械学習関係者ならよくご存知でしょう。TensorFlow は、常に最も人気のあるオープンソースのディープラーニング フレームワークの 1 つです。 2015 年以来、何千人ものオープンソース貢献者、開発者、コミュニティ主催者、研究者がこのオープンソース ソフトウェア ライブラリに投資してきました。 しかし、近年、TensorFlow をめぐる論争は絶えず、Google が TensorFlow を放棄して JAX に移行するというニュースも大きな論争を引き起こしました。 では、TensorFlow の現在のユーザー エクスペリエンスはどうでしょうか?今日の Reddit の苦情投稿は、ユーザーの声を反映している可能性があります。 この記事の著者は、2017 年以来、ディープラーニングのキャリアを通じてほぼずっと TensorFlow を使用しており、常に Windows システムで使用してきたと述べています。しかし、バージョン 2.10 から 2.13 にアップグレードすると、GPU が活用されていないことがわかりました。さらに調査したところ、TensorFlow はバージョン 2.10 以降、Windows GPU のサポートを中止していたことがわかりました。 そのため、TensorFlow 2.10 は Windows 上でネイティブ GPU をサポートする最後のバージョンであると彼は言いました。 2.11 以降では、WSL 2 に TensorFlow をインストールするか、TensorFlow-DirectML-Plugin を使用する必要があります。これにより、多くの問題が発生しました。彼が知っている機械学習開発者のほとんどは Windows を使用してローカルで開発を行っていたため、展開のために Linux に切り替える必要がありました。 彼は WSL が選択肢であることは知っていましたが、欠点は RAM の 50% しか使用せず、ネイティブ ファイル システムを使用しないことでした。多くの人が PyTorch に切り替えているときも、彼は TensorFlow の使用を主張し続けましたが、今では裏切られたと感じています。 TensorFlow は彼を見捨てた。彼もすぐに PyTorch に切り替える予定です。 著者の経験は多くのネットユーザーによって共感されました。TensorFlow は「死んだ」と言い、Google のエンジニアでさえ TensorFlow の代わりに JAX を使用するつもりだと言う人もいました。 別のネットユーザーも、TensorFlow が 2.0 にアップグレードされて以来、徐々に衰退し始めていると考えている。 Google が今後数年のうちに TensorFlow のサポートを完全にやめ、社内で JAX に切り替えたとしても、彼は驚かないだろう。 TensorFlow に何が起こったのでしょうか?偶然にも、今日 Twitter で誰かが TensorFlow について疑問を呈していました。「Google の TensorFlow で何が起こったのでしょうか?」このひどいソフトウェアは根本的に壊れており、TensorFlow コアの 5 つのバグを見つけるのに 1 年かかりました。 下の図からも、2021 年 5 月 1 日以降、TensorFlow と PyTorch に対する人々の関心が変化していることがわかります。 ツイッター: @jxmnop 著名なソフトウェア開発者であり、Deep trading の創設者でもある Yam Peleg 氏は、TensorFlow の主な問題はバグであると述べています。シンプルなインターフェース (カスタム損失の記述など) を使用したい場合、しばらくするとパッケージが故障してクラッシュします。したがって、ほとんどの時間を作業ではなく、これらのバグを回避する方法に費やす必要があります。 もう一人の著名な機械学習学者であり、『Python Machine Learning』の著者でもあるセバスチャン・ラシュカ氏も自身の見解を述べた。 初期のフレームワークの 1 つである TensorFlow で何が問題だったのかは彼にはよくわからず、問題の解決に多大な労力が費やされました。彼は、ディープラーニングの分野が急速に発展するにつれて、Google が TensorFlow を拡張し、さまざまなパッチを追加する必要があり、それが非常に混乱を招いていることが問題だと考えています。今、私たちはすべての教訓を学び、ゼロから再設計しなければなりません。おそらくこれが、Google が JAX+Flax を推進する理由でしょう。 Synced の読者の皆様、TensorFlow はまだ役に立ちますか? PyTorch などの他のフレームワークに切り替える予定はありますか? |
<<: AIの海のサイレンソング:テンセントAIラボの大規模モデルの幻覚問題の概要
>>: GPT-4は97回の対話で世界の諸問題を探り、P≠NPという結論を導き出した。
翻訳者 | 李睿校正:孫淑娟人間にとって、変形可能な物体を処理することは、硬い物体を処理することより...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
1 月 10 日、マイクロソフトの量子コンピューティング チームは、米国エネルギー省傘下のパシフィッ...
01 バイアスと分散のトレードオフこれは、機械学習における最も重要な理論の中で常に上位にランクされ...
「市の東にある家で爆弾が爆発しようとしています!」 「爆弾はネズミ捕り、ACデルコ社の単三電池、亜鉛...
ケビン・ケリー氏は「人工知能は人類社会を混乱させる次のものだ」と語った。 2020年は、全世界が前例...
最近、気温がどんどん上昇し、全国各地で猛暑日数や平均気温が新記録を更新するなど、さまざまな火災の危険...
顔検出などの物体検出用のディープラーニング ネットワークにとって、誤検出は非常に厄介なものです。犬を...
6月19日、第17回IEEEコンピュータ協会バイオメトリクスワークショップ(CVPR22)とAnt...
[[383265]] 「ワイルド・スピード8」を見たことがある友人なら、ハッカーが1,000台の車...
10月12日、ブルームバーグは昨夜、グーグルとDiscordが共同で自社のAIチャットボット「Bar...
これまで、視覚システムに関する基本的な研究の多くは、動物に画像を見せ、そのニューロンの反応を測定し、...