考えてみると恐ろしいですね!人工知能は、成功率70%で人間の行動を操作することを学習したと疑われている。

考えてみると恐ろしいですね!人工知能は、成功率70%で人間の行動を操作することを学習したと疑われている。

人工知能に関しては、多くの人が懸念を表明しています。例えば、人類開発の最前線にいるホーキング博士とマスク博士は、どちらも人類が人工知能を積極的に開発すべきではないと考えています。彼らは、将来、SF映画のワンシーンが現実になり、人類が人工知能を開発しても、最終的にはそれに打ち負かされるのではないかと懸念しています。

これは本当にそうなのでしょうか? 最近、人工知能に関する新たな研究がこの問題を再び前面に押し出しました。研究者たちは、人工知能が人間の弱点を見つけ、人間の習慣を発見することを学習し、それによって人間を操作していることを発見しました。実験では、人工知能が人間を制御する成功率はかつて 70% に達しました。

[[383238]]

人工知能は人間の行動を操作することを学んだ

オーストラリアの科学者チームが関連する実験を行い、実験の中で人工知能が人間の弱点に基づいて人間の法則を要約し、最終的には人間が独立して選択できるようにするのではなく、人間を操作して選択を導くことができることを発見しました。

最初の実験では、人間の参加者が、人間の参加者の選択パターンを学習し、その中のパターンを識別するように設計された AI と一緒にゲームをプレイしました。最終的に、赤と青のどちらを選ぶかという問題になると、人工知能は人間の参加者が何を選ぶかを事前に知ることができ、ゲーム中に人間の参加者が異なる選択をするように意図的に誘導することができます。

2 番目の実験も小さなゲームでした。ゲーム中、人間の参加者は画面上でさまざまなシンボルを見ることができます。ただし、これらのシンボルのうち選択できるのはオレンジ色の三角形だけです。この実験では、人工知能の出現により、人間の参加者が間違いを犯す可能性が高まり、思考が混乱しました。

3 番目の実験はさらに興味深いものですが、もちろん、よく考えてみると、この実験もさらに恐ろしいものになります。この実験では、人間の参加者と人工知能が「ロールプレイング」ゲームを開始しました。人間の参加者は投資家の役割を演じ、各ラウンドの利益に基づいて次のラウンドの投資比率を決定するために人工知能と協力する必要がありました。

この実験では、より多くの資金を得るために、人工知能は人間の参加者の習慣を熟知した後、意図的に彼らを操作し始めました。最終結果は、ゲームの各ラウンドで、人間の参加者が人工知能のガイダンスに従って選択を行ったことを示しました。

3つの小さなゲームのように見えますが、実際には多くの問題があります。人工知能は初期段階ですでに人間を制御できます。では、将来人工知能が本当に高度な人工知能の段階まで発展した場合、人間は本当に人工知能の影響を受けないと確信できるのでしょうか?

人工知能は人間に勝つのでしょうか?

実際、人工知能が人間を制御できるのは、その過程で人間をより深く理解しているからです。もっと率直に言えば、人工知能はビッグデータ分析を通じて人間の習慣を習得したのです。

そのため、一部の研究者は、人間が人工知能を制御すればデータ収集のみが可能であれば、同様の事件は避けられると考えています。しかし、人工知能開発者にとっては、人工知能を開発したとはいえ、人工知能の潜在的なリスクや将来の方向性は未知数であるため、これは容易ではありません。

結局のところ、人工知能が本当にビッグデータとつながれば、最終的に何を学ぶことになるのかは誰にもわかりません。この問題は、ホーキング博士のような反対派にとって最も懸念される問題でもあります。結局のところ、高度な人工知能がどれほど強力であるかは想像もできませんし、SF映画の「ロボット」よりも強力になる可能性も十分にあります。

もちろん、この質問は現時点で検討するには少し冗長です。なぜなら、現在の人工知能は、はっきり言って、「遅れた人々」の集まりに過ぎず、まだ真の人工知能ではないからです。たとえば、アウストラロピテクスやホモ・ハビリスと現代人の違いのようなものです。

しかし、時代は進歩しており、人工知能の分野も絶えず発展しています。人類は依然として未来を心配する必要があります。結局のところ、注意しないと、高度な人工知能の問題が災害につながる可能性があります。

もちろん、80年も前に研究者たちは「ロボット原理」を提唱しました。これは、ロボットが人間に危害を加えないことが保証されなければならないと同時に、ロボットは人間の命令に従わなければならないというものです。しかし、この制限は本当に役に立つのでしょうか? 誰にもわかりません。

たとえば、将来、白人以外のすべての人間を殺すようにロボットをプログラムする人種差別主義者がいたとしたら、ロボットの認識プロセス中に、当然、人間の世界に災害が起こるでしょう。ですから、この心配は存在しないとは言えませんが、将来的には発生する可能性が非常に高いと言えます。どう思われますか?

<<:  AIの将来にとって人間の関与が重要な理由

>>:  機械学習: 具体的なカテゴリーは何ですか?プロジェクトのプロセスはどのようなものですか?

ブログ    
ブログ    
ブログ    

推薦する

さまざまな専門家が独自のカスタムGPTを提供しました。24時間のトップ9リストはこちらです。

11月10日の早朝、OpenAIはGPTをリリースしました。ChatGPT Plusのすべての加入...

歴史上最も知られていないアルゴリズムとして知られる Paxos は、どのようにして理解しやすくなったのでしょうか?

背景分散コンセンサスアルゴリズム(Consensus Algorithm)は、分散コンピューティング...

人工知能の知られざる歴史: 目に見えない女性プログラマーたち

この 6 部構成のシリーズでは、AI の人類史を探り、革新者、思想家、労働者、さらには小規模なトレー...

アイデアから実装まで、2018 年の 13 の驚くべき新しい NLP 研究

2018 年には、自然言語処理の分野で多くの刺激的なアイデアやツールが生まれました。概念的な視点から...

...

AIがサイバーセキュリティに与える影響

人工知能(AI)は、人間の知能をシミュレート、拡張、拡大するための理論、方法、技術、アプリケーション...

MotionLM: 言語モデルとしてのマルチエージェント動作予測

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

...

OpenAIに挑戦する新しいモデルが無料で利用可能に。GPT-4の40%の計算能力とパフォーマンスに近い

今週木曜日、アメリカのAIスタートアップ企業Inflection AIが次世代の大規模言語モデルIn...

ナレッジグラフと AIGC を組み合わせるにはどうすればよいでしょうか? JD.comがやっていること

I.はじめにまず、JD.com による電子商取引シナリオにおける AIGC の調査について紹介します...

AIアルゴリズムが軍用無人車両への中間者攻撃を検出

研究者らは、軍用無人車両に対する中間者攻撃を検出できる人工知能アルゴリズムを開発した。ロボットオペレ...

RPA 導入が失敗する 7 つの理由

ロボティック・プロセス・オートメーションは現在、業界全体のデジタル化を推進するデジタル変革の中核とな...

自然言語処理パート1: テキスト分類器

[[194511]]序文テキスト分類は、自動記事分類、自動メール分類、スパム識別、ユーザー感情分類な...

人工知能が人々を生き返らせる

Google を含む多くの企業が、人間の寿命を延ばす方法を研究しています。たとえ何百年も長く生きられ...

テスラの自動運転タクシー参入は依然として困難

[[442909]] [51CTO.com クイック翻訳]テスラは2019年4月に「Autonomy...