TensorFlow 2.0「開発者プレビュー」が利用可能になりました

TensorFlow 2.0「開発者プレビュー」が利用可能になりました

TensorFlow 2.0 プレビューが利用可能になりました。最近、Google AI チームのメンバーである Martin Wicke 氏が、この最新のディープラーニング フレームワークの「開発者プレビュー」をソーシャル ネットワークで公開しました。このバージョンは、フレームワークが毎晩更新されるため、「ナイトリー バージョン」とも呼ばれています。これは安定したバージョンではありませんが、開発者はこれを試して、新しいバージョンの機能に慣れることができます。

ただし、TensorFlow 2.0 でも、現時点では Python 3.7 はサポートされていません。

一部のネットユーザーは次のようにも述べた。

ナイトリー ビルドはベータ ビルドに近いため、ユーザーに今後のリリースのプレビューと新機能の使用/貢献の機会が提供されます。 Nightly バージョンは、決して本番環境向けに設計された安定したバージョンではありません。開発者が使用している最新の機能をテストすることを目的としています。ドキュメントは自動的に提供されず、バグが見つかる可能性があり、機能の可用性は保証されません。

プレビュー版公式ページ: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf

開発者は次のコードを入力してプレビュー バージョンをインストールできます。

  1. pip インストール tf-nightly- 2.0 -preview

GPU バージョンをインストールするには:

  1. pip で tf-nightly-gpu- 2.0 -previewをインストールします

現在のバージョン番号は: tf-nightly-2.0-preview-1.13.0.dev20181214 です。

TensorFlow 2.0 は、tf-nightly-2.0-preview および tf-nightly-gpu-2.0-preview として pypi で利用できるようになりました。また、(configure を実行した後) bazel コマンドに --config=v2 を渡すことで、ソースからリリースをビルドすることもできます。 TensorFlow 2.0 は同じソース ツリーからビルドされるため、ソースからビルドする場合は、マスターからビルドするだけで済みます。

Nightly バージョンで生成されたドキュメントは、公式プレビュー ページから入手できます。 Nightly はまだ開発中であるため、ドキュメントはいつでも役に立たなくなったり不完全になる可能性があります。

TensorFlow 2.0 の開発において、Google は使いやすさに重点を置き、計算の指定方法と実行方法に大きな変更を加えました。 2018 年秋に公開された RFC (https://github.com/tensorflow/community/tree/master/rfcs) では、このような大きな変更が実装されました。

pip パッケージには、(ほとんどの) 1.x TensorFlow コードをアップグレードして、Nightly でインストールされた 2.0 で実行できるようにするコンバーター ツールが付属しています。 tf_upgrade_v2 ツールは、互換性モジュール tf.compat.v1 を多用します。このモジュールには、TensorFlow 1.x に存在するすべてのシンボルとその元の機能が含まれています。さらに、アップグレード ツールはまだ開発中であり、複雑なプロジェクトでは機能しない可能性があります。

この Nightly バージョン 2.0 はまだ不完全です。そのため、Google は、安定性が保証されておらず、未解決のパフォーマンス問題が残っており、一部の機能が欠落しており (たとえば、一部の分散メカニズムのみがサポートされており、特に TPU サポートはまだ不完全)、TensorFlow エコシステムが 2.0 と同期して更新されていない (たとえば、TFHub) と述べています。 Google は、2.0 アルファ版を作成する前にこれらの問題に対処すると述べた。

Nightly バージョンを試してみたい場合は、使用中に見つかった問題の報告を歓迎すると Google は述べています。

バグレポートの提出方法については、こちらをご覧ください: https://github.com/tensorflow/community/blob/master/governance/tensorflow-testing.md

[[255350]]

TensorFlow 2.0 は、主要な機械学習フレームワークにとって大きなマイルストーンです。新しいバージョンは、機械学習を誰もが利用できるようにすることを目指して、大幅な改良が行われています。ただし、これらの変更により、ベテラン ユーザーはフレームワークの使用方法を再度学習する必要が生じる可能性があります。

昨年 9 月、Google は開発者会議で、TensorFlow 2.0 バージョンでは Eager モードがデフォルトの実行モードになり、開発者がよりシンプルかつ効率的にプロトタイプを構築できるようになると発表しました。

馮一菲氏は開発者会議で、TensorFlow 2.0のベータ版は2018年末(少し遅れているようだ)にリリースされ、正式版は2019年第1四半期(遅くとも第2四半期)にリリースされる予定だと述べた。イーガー モードがデフォルト設定になると、開発者はプロトタイプの構築後に AutoGraph を使用して、イーガー モードで構築されたモデルを計算グラフに自動的に変換できるようになります。開発者は、AutoGraph によって生成された計算グラフをさらに最適化したり、Eager モードをオフにして計算グラフを自分で構築したりすることもできます。

<<:  人工知能技術をより効果的に応用するにはどうすればよいでしょうか?より正確かつ迅速に行う5つの方法

>>:  小都 Bluetooth アライアンス サミット: 会話型 AI テクノロジー + Bluetooth デバイスでスマートな未来を創造

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

Nature: DeepMind の大規模モデルが 60 年前の数学的問題を突破、その解決法は人間の認識力を超える

Google DeepMind の最新の成果が再び Nature に掲載され、大規模なモデルを使用し...

AIチップのスタートアップ企業CambrianがシリーズB資金調達で数億ドルの完了を発表

本日、AIチップのスタートアップ企業Cambrianが数億ドルのBラウンド資金調達を完了した。資金調...

AIは観光業を良いビジネスにするでしょうか?

[[245713]]黄金の9月と銀の10月、観光業界は好景気の日々を待ち望んでいました。一方では、...

生成型AIが小学生の「初めてのプログラミングレッスン」に登場:線を描いて音楽を生成し、スケッチが一瞬で傑作に変わる

古典作品「星の王子さま」には、蛇が象を飲み込む絵を描いた少年が、大人たちにその絵を見せて怖いかと尋ね...

...

Baidu PaddlePaddleは4つの新しい業界アプリケーション開発キットをリリースし、業界インテリジェンスのアップグレードを支援するマスターモードを革新しました

産業社会の急速かつ安定した発展は、完璧なインフラと切り離すことはできません。ディープラーニングフレー...

都市は AI 導入をどのように進めているのでしょうか?

AIはどのように機能し、スマートシティ開発の次のステップとして、都市や公共スペースにAIを導入でき...

チューリング賞受賞者のヤン・ルカン氏:今後数十年間の AI 研究の最大の課題は「予測世界モデル」

ディープラーニングの大規模な応用の後、人々はさらなる技術的進歩をもたらすことができる真の汎用人工知能...

2020年の新自動運転技術レポートが公開されました!

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

...

...

自動運転におけるトランスフォーマーベースのモデルとハードウェアアクセラレーションの分析

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

ファーウェイクラウドは、2021年世界インターネット会議で人工知能イノベーションの3つの要素を提案し、新たな産業エコシステムを構築

本日、2021年世界インターネット大会烏鎮サミットにおいて、ファーウェイ上級副社長、ファーウェイクラ...

Dubbo 負荷分散戦略コンシステントハッシュ

この記事では、主にコンシステント ハッシュ アルゴリズムの原理とデータ スキューの問題について説明し...