コンピュータービジョン技術を使用することで、コンピューターは視覚的に物を識別したり確認したりすることができます。たとえば、車と人を検知して区別することができます。では、コンピューター ビジョンはどのようにして目標を達成するのでしょうか? このテクノロジーは大量のデータを処理し、そこから知識を獲得します。データの種類、パターン、品質などを取り込んで分析することができ、たとえば、時間の経過に伴うアイテムの識別に使用できます。これは非常に多層的で複雑な技術です。人間主導のコンピューター ビジョンにはいくつかの用途があります。まだ初期段階ではありますが、このレポートは、コンピューター ビジョンの使用がさまざまな業界の組織に大きな利益をもたらしていることを示唆しています。以下にいくつかの例と説明を示します。
コンピュータービジョンの技術は主に人工知能と機械学習に依存しています。人工知能により、コンピューター ビジョンはさまざまな視覚入力を理解、認識、分析できるようになります。 AI モデル、ロジック モデル、およびモデルは、大量のラベル付きおよびラベルなしの視覚入力をすばやく取り込み、吸収し、学習できます。コンピューター ビジョンを備えたコンピューターは、映画、画像、インフォグラフィック内の固有の特徴、パターン、相関関係を区別できます。機械学習は、コンピュータービジョンを可能にする人工知能の分野です。 機械学習では、大規模なトレーニング データ セットを使用してパターンを検出します。機械学習のアルゴリズムやロジックを使用すれば、最も複雑な写真、特徴、特性、オブジェクトでも見つけることができます。最も複雑な写真でも、機械学習を使用してセグメント化することができ、異常を探すこともできます。画像セグメンテーションを使用すると、コンピューターは画像を論理コンポーネントに分離できます。たとえば、窓、フロントガラス、ホイール、ステアリングなどの特徴に基づいて車を分類できます。画像のセグメンテーションにより、複数の論理部分を区別することが可能になります。 さらに、画像セグメンテーションではさらに深く掘り下げて、各コンポーネントの固有の特性を識別します。プロセス全体は複雑でリスクを伴います。不正確なデータの識別と処理は誤った結論につながる可能性があります。たとえば、道路を走行する自動運転車が、縞模様のシャツを着た歩行者を横断歩道だと誤って認識した場合、悲惨な結果を招く可能性があります。 |
<<: Google Cloud Next: カンファレンス全体を通じて人工知能について語る
>>: 量子コンピューティングの「GPT の瞬間」はもうすぐ来るのでしょうか?企業はどのように準備すべきでしょうか?
[[397649]]シーケンスツーシーケンス (seq2seq) モデルは、自然言語生成タスクに対す...
[[276909]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...
最近人気の AI スタートアップ企業 Groq は、現在一般的な GPU 推論システムよりも 4 倍...
この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...
[[401455]]地熱発電は地球の地下の自然の熱を利用して電気を生み出すので、魅力的な点がたくさん...
今年、大規模言語モデルが急速に発展したため、BERT のようなモデルは「小規模」モデルと呼ばれるよう...
3月15日、毎年恒例のCCTV Finance 3.15 Galaが開催されています。序文から判断す...
最近、インテルの研究者らは、新しい小さな「スピン量子ビット」チップをテストしていることを明らかにした...
機械学習はよく話題になりますが、「機械の忘却」について聞いたことがありますか?機械学習の目的は誰もが...
[[430430]]この記事はLeiphone.comから転載したものです。転載する場合は、Lei...
人間は機械にゲームをさせることに魅了されているようだ。1770 年という早い時期に、発明家たちは「ト...
[[204226]]今年4月、クアルコムのグローバル副社長兼クアルコムベンチャーズのマネージングデ...
先日の中国国際輸入博覧会では、多くの現実的な人工知能製品が展示され、AIに代表される新技術が生活の細...