コンピュータービジョンにおける AI の役割は何ですか?

コンピュータービジョンにおける AI の役割は何ですか?

コンピュータービジョン技術を使用することで、コンピューターは視覚的に物を識別したり確認したりすることができます。たとえば、車と人を検知して区別することができます。では、コンピューター ビジョンはどのようにして目標を達成するのでしょうか?

このテクノロジーは大量のデータを処理し、そこから知識を獲得します。データの種類、パターン、品質などを取り込んで分析することができ、たとえば、時間の経過に伴うアイテムの識別に使用できます。これは非常に多層的で複雑な技術です。人間主導のコンピューター ビジョンにはいくつかの用途があります。まだ初期段階ではありますが、このレポートは、コンピューター ビジョンの使用がさまざまな業界の組織に大きな利益をもたらしていることを示唆しています。以下にいくつかの例と説明を示します。

  • 医療スタッフは AI アルゴリズムを使用して、X 線や MRI などのさまざまな画像ファイルをスキャンし、異常や問題を検出して診断を改善できます。
  • 世界的な小売大手は、AI 駆動型コンピューター ビジョンを活用して、サプライ チェーンの効率を最大化し、全体的な生産性を向上させることができます。さらに、顧客体験を向上させ、離職率を削減するためにも使用できます。小売大手は、この技術を使用して、空の棚を見つけ、在庫を補充し、顧客の好み、閲覧、買い物の習慣に基づいて関連商品を推奨しています。
  • コンピュータービジョンの助けを借りて、自動運転車は周囲の状況を理解することができます。人間の運転手は自動運転車を運転しません。したがって、悲劇を避けるためには、正確な物体と環境の識別が重要です。
  • 当局は、不審な活動や怪しい人物を素早く検知したり、潜在的な脅威を強調したりするために、AIを搭載したコンピュータービジョンを使用して、空港、博物館、スタジアム、駅などの公共エリアを監視し始めています。テクノロジーは犯罪を減らす上でますます効果的になってきています。
  • 作物の品質、土壌の状態、多くの植物病害の検出は、AI コンピューター ビジョンを使用して評価されています。この技術は、農家がこれを活用して農業生産を増やし、資源の浪費を最小限に抑えるのに大いに役立ちます。

コンピュータービジョンの技術は主に人工知能と機械学習に依存しています。人工知能により、コンピューター ビジョンはさまざまな視覚入力を理解、認識、分析できるようになります。 AI モデル、ロジック モデル、およびモデルは、大量のラベル付きおよびラベルなしの視覚入力をすばやく取り込み、吸収し、学習できます。コンピューター ビジョンを備えたコンピューターは、映画、画像、インフォグラフィック内の固有の特徴、パターン、相関関係を区別できます。機械学習は、コンピュータービジョンを可能にする人工知能の分野です。

機械学習では、大規模なトレーニング データ セットを使用してパターンを検出します。機械学習のアルゴリズムやロジックを使用すれば、最も複雑な写真、特徴、特性、オブジェクトでも見つけることができます。最も複雑な写真でも、機械学習を使用してセグメント化することができ、異常を探すこともできます。画像セグメンテーションを使用すると、コンピューターは画像を論理コンポーネントに分離できます。たとえば、窓、フロントガラス、ホイール、ステアリングなどの特徴に基づいて車を分類できます。画像のセグメンテーションにより、複数の論理部分を区別することが可能になります。

さらに、画像セグメンテーションではさらに深く掘り下げて、各コンポーネントの固有の特性を識別します。プロセス全体は複雑でリスクを伴います。不正確なデータの識別と処理は誤った結論につながる可能性があります。たとえば、道路を走行する自動運転車が、縞模様のシャツを着た歩行者を横断歩道だと誤って認識した場合、悲惨な結果を招く可能性があります。

<<:  Google Cloud Next: カンファレンス全体を通じて人工知能について語る

>>:  量子コンピューティングの「GPT の瞬間」はもうすぐ来るのでしょうか?企業はどのように準備すべきでしょうか?

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

Baidu WorldがAI応用レポートカードを発表、国民経済の3大産業に進出

11月1日、2018年百度世界大会が北京で開催されました。「YES AI DO」をテーマにしたこの大...

機械学習機能を簡単に拡張: Rancher に Kubeflow をインストールする方法

機械学習の分野が発展し続けるにつれて、機械学習を扱うチームが単一のマシンでモデルをトレーニングするこ...

AlphaGoの仕組み:マルチエージェント強化学習の詳細な説明

このレビュー記事では、著者はマルチインテリジェンス強化学習の理論的基礎を詳細に紹介し、さまざまなマル...

ガートナー:テクノロジープロバイダーの33%が2年以内にAIに100万ドル以上を投資する

[[427302]]ガートナーの新しい調査によると、人工知能 (AI) 技術計画を持つテクノロジーお...

面接の質問: Nginx の負荷分散アルゴリズムはどのように実装されていますか?なぜ動きと静止を区別する必要があるのでしょうか?

面接の質問Nginx の負荷分散アルゴリズムはどのように実装されていますか? Nginx の負荷分散...

...

...

サーバーが過負荷状態です! GANで生成された肖像油絵は人気があり、一瞬でルネッサンス時代に戻ることができます

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

変革的な AI、ノーコード、ローコード - エンタープライズ AI 導入に最適なパスはどれでしょうか?

COVID-19のパンデミックにより、私たちはテクノロジー、オンライン活動、人工知能への依存をさら...

私たちの重要なインフラは人工知能に対応できるでしょうか?

ChatGPT を楽しみや機能のために使用する個人から、タスクの自動化に人工知能 (AI) を適用...

超まとめ! 200以上の便利な機械学習、NLP、Pythonチュートリアル

[[244555]]ビッグデータダイジェスト制作編集者: グアグア、アイリーンこの投稿には、私がこれ...

学術専門家を募集中 | 過去 10 年間に人工知能の 21 のサブ分野で引用数の多い学者

人工知能は、特に過去 10 年間で急速に発展しました。人工知能の分野は、自然言語処理、コンピューター...

AIと分析がIoT収益化の鍵となる理由

通信業界は現在、競争力を維持するために IoT を収益化するという厳しい課題に直面しており、高度なテ...

詳細 | EUの人工知能法案が進行中:公共の場での顔認識の禁止を求める、市場シェアを獲得するために厳しい監視が必要

最近、EUの人工知能規制に新たな展開がありました。欧州データ保護委員会(EDPB)と欧州データ保護監...