さまざまな業界がエッジAIから得られるメリット

さまざまな業界がエッジAIから得られるメリット

ご存知のとおり、人工知能は計算能力を消費し、多数のデータセンターを必要とします。 しかし、適切な状況であれば、その優れた機能は、より小型でポータブルなデバイスでも実現できます。

エッジ AI とは、データ ソースに近い分散型ハードウェア デバイスに AI システムを配置する手法です。 このアプローチにより、レイテンシが短縮され、プライバシーが向上し、デバイス間で転送されるデータの量が削減され、ローカル AI アプリケーションのパフォーマンスが向上する可能性があります。 ただし、他の一般的なクラウド コンピューティング ワークロードよりも多くのコンピューティング能力が必要になる場合もあります。

エッジ AI は、計算をデータ ソースの近くに保つことでパフォーマンス上の利点を提供し、プライバシー保護を優先する際にセキュリティを確保し、アクセスが困難な場所でデータを収集する際にロジスティックス上の利点を提供します。 ビジネスリーダーが知っておくべきエッジ AI のユースケースが、垂直市場全体で出現しています。 検討すべき主な例としては、製造と生産、ヘルスケア、エネルギー、輸送、小売などが挙げられます。

エッジAIとエッジコンピューティング

エッジ AI は、スマートフォン、スマート冷蔵庫、その他の IoT デバイスなどのデバイスにインテリジェント コンピューティングの頭脳を直接適用するものです。 デバイスは、インターネット経由で情報が送信されるのを待たずに決定を下すことができます。 エッジ コンピューティングとは、コンピューティング作業をデータが収集される場所に近づけることです。 エッジコンピューティングは、AI による意思決定に加えて、データの保存や単純な処理などのタスクもカバーします。

「エッジAIは、多くの業界が自社の製品や業務で生成されたデータを収集し、活用する方法に革命をもたらし始めています」と、プロフェッショナルサービス企業PwCのグローバル人工知能リーダーであるアナンド・ラオ氏は語った。

エッジ コンピューティングは、病院の監視や予測メンテナンスなどに使用される多くの強力なシステムを実行します。 エッジ AI はこのようなタスクのパフォーマンスを向上させます。 たとえば、コンピューター ビジョンを使用して、患者の転倒などの重要なイベントをローカル デバイスから検出し、医療スタッフに警告を送信できます。 エッジ デバイスの追加機能の他の例としては、自然言語処理や予測分析などがあります。

「エッジAIとエッジコンピューティングは、データを処理し、そこから価値を引き出す方法を変えていますが、その方法はそれぞれ異なります」と、世界的な戦略および経営コンサルティング会社カーニーの高度分析プラクティスのパートナーであるバラス・トータ氏は述べています。

エッジAIが企業にもたらすメリット

企業にとってのメリットとしては、データ量が多いシナリオでのネットワーク負荷に関連するコストの削減、機密性の高いアプリケーションのプライバシー保護、推論のパフォーマンスと精度の向上などが挙げられます。 エッジ AI は、複雑な AI 計算をローカル デバイスにプッシュすることで、効率を向上させ、コストを削減します。 これにより、大規模な集中型コンピュータ システムやサーバーへの AI 推論ワークロードの依存が軽減されます。 アプリケーションがデータのリアルタイム分析を実行する必要がある場合、データ ソースに近接することでレイテンシが短縮されます。

エッジ AI はデータ セキュリティを強化することもできます。 データ収集プロセスをローカライズし、データ ソースで予測を実行し、外部ネットワーク トラフィックを AI モデルの出力のみに制限して、機密性の高い可能性のあるデータ入力を保護します。 最後に、これは、ネットワーク接続が不安定な遠隔地のデバイスや操作にとって信頼性の高いソリューションです。

「エッジ AI は、レイテンシを削減し、インターネット接続の必要性さえなくすことで、さまざまな新しいユースケースを可能にします」と、グローバル コンサルティング会社 Protiviti のシニア ディレクター、ルーカス ラウ氏は述べています。これらのシナリオでは、エッジ コンピューティング セットアップがない場合よりもアプリケーションを高速に実行できます。

エッジAIの業界固有のユースケース

業界での使用例は次のとおりです。

製造と生産: エッジ AI は、生産設備群または生産設備グループの予測メンテナンスを改善します。 AI モデルは、機器が最も故障する可能性がいつあるかを予測します。ローカルで実行されるアルゴリズムは、機械の振動、熱、音響データなどの要素を分析します。高解像度かつリアルタイムでこれを実行します。分析から得られた洞察が出力となります。

製造工場や現場業務における大規模なデータ収集作業は、データクリーニングと異常検出によって改善できます。これらのタスクをローカルで実行すると、データのオーバーヘッドが削減され、応答時間が向上します。

ヘルスケア:エッジ AI は患者をリアルタイムで監視し、ケアと安全性を向上させます。患者が装着するウェアラブルデバイスが健康データを収集します。 AI ベースの情報分析がローカルで行われると、データを送信して集中処理する場合と比べて帯域幅の消費が削減され、データのプライバシーが強化されます。

エネルギー。エッジ AI はデバイスをリアルタイムで監視できます。これは、製造業のユースケースと同様に、発電所や風力発電所などのエネルギー設備の修理が必要になる時期を予測するのに役立ちます。また、エネルギー使用データを研究して忙しい時間を特定し、使用パターンを予測し、工場のエネルギー配分方法を改善するツールも改善される可能性があります。

交通:エッジ AI は、車両に取り付けられたセンサーからのデータをリアルタイムで処理し、自律走行車が周囲の状況を理解し、判断し、迅速に移動できるようにします。また、車が車線から外れたときに警告を発したり、運転支援システムを強化したりすることもできます。

小売業: Edge AI は、ビデオ ストリームを処理して損失防止をサポートすることで、セキュリティ インシデントの検出を改善します。

<<:  IEEE: 新たな AI サイバーセキュリティの課題と解決策

>>:  中国情報通信科学院の張琳琳氏:AIセキュリティの標準化は、今後も基本的かつ規範的、主導的な役割を果たし続けるべきである。

ブログ    
ブログ    
ブログ    

推薦する

脳コンピューターインターフェースにおける重要な進歩!国内チームが「フルスペクトル中国語解読」に成功:トップ3の正解率は100%に迫る

今年8月、ネイチャー誌に立て続けに掲載された2つの論文は、脳コンピューターインターフェースが言語回復...

ヨシュア・ベンジオ:私は国家間のAI競争を見たくないし、現在のAIの考え方を心配している。

[[250218]]ヨシュア・ベンジオ氏は、間違いなく現代の人工知能技術分野の第一人者です。ベンジ...

Google、再生可能エネルギーと機械学習の力を借りて風力発電の予測に成功

従来の観点から見ると、目に見えず、実体のない風が新しい日にどのような挙動を示すかを予測することは依然...

...

2020 年の国内トップ 10 の人工知能イベントのレビュー: 政策と規制、技術的成果、産業への応用などを網羅。

人工知能業界では、今年多くの出来事がありましたが、その中には慎重に検討する価値のあるものもありました...

大規模なモデルをグローバルに微調整できないわけではなく、LoRA の方がコスト効率が高いだけです。チュートリアルは準備完了です。

データ量とモデルパラメータの数を増やすことが、ニューラル ネットワークのパフォーマンスを向上させる最...

将来の医療における人工知能の重要な役割

今日の製薬業界が直面している最大の課題の 1 つは、新薬の開発と市場投入にかかるコストの高さです。こ...

清華大学がサッカーAIを開発:初めて10人の選手を同時にコントロールして試合を完了し、勝率は94.4%

[[434349]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitA...

...

AIはこれらの企業の製品イテレーションの最終決定権を持っている

▲センサー・ウェアラブルデバイス市場におけるAIスタートアップの分布図人工知能は、企業が新たなビジ...

DxRアルゴリズムのアイデアに基づいて設計されたルーティングアイテム配置構造の図

まず、タイトルには、検索構造ではなく、ルーティング項目の配置構造と書かれています。つまり、この構造を...

IDC:2026年までに国内市場の端末のほぼ半数がハードウェアレベルのAIエンジン技術を搭載

市場調査会社IDCは7月25日、近年の人工知能の急速な進化と発展により、ビッグデータモデルはますます...

欧州のAI規制案は世界的な影響を及ぼす可能性がある

メディアの報道によると、欧州連合は最近、米国や中国のテクノロジー大手を含む組織を対象に、域内での人工...

...

...