NYU の具現化知能における新たな進歩: 視覚的なフィードバックで缶を開ける方法を学習し、タスクの成功率が 135% 向上、LeCun 氏はそれを好意的に評価

NYU の具現化知能における新たな進歩: 視覚的なフィードバックで缶を開ける方法を学習し、タスクの成功率が 135% 向上、LeCun 氏はそれを好意的に評価

ロボットがペンチで簡単にワイヤーを切る様子をご覧ください。

あっという間に鉄の箱の蓋が開きました。

さらに、物体を掴むなどの作業も簡単に完了できます。

このロボットの背後には、ニューヨーク大学とメタ AI 研究所が立ち上げた最新の具現化された知能の成果があります。

研究者らは、視覚と触覚を組み合わせてロボットのタスク遂行効率を2倍以上に高めるTAVIと呼ばれる新しいトレーニング方法を提案した。

現在、研究チームの論文は公開されており、関連コードはオープンソース化されています。

このロボットの性能を見て、Meta 社の主任科学者 LeCun 氏は、これは驚くべき進歩だと思わずにいられませんでした。

では、この方法を使用して訓練されたロボットは他に何ができるのでしょうか?

取り出しやすく、出し入れも簡単

重ねられた2つのボウルを分離し、上のボウルを取り出すことができます。

注意深く観察すると、分離プロセス中にロボットの手が追跡動作を行い、黄色のボウルが緑色のボウルの内壁に沿って滑ることがわかります。

このロボットは「分割」だけでなく「結合」もできます。

ロボットは赤い物体を拾い上げ、それを紫色の蓋の中に正確に置きました。

または、消しゴムを裏返します。

大きな消しゴムを拾い、下のボックスを使って角度を調整するのが見えました。

なぜもっと指を使わなかったのかはわかりませんが、結局は道具の使い方を学びました。

つまり、TAVI 方式で訓練された具現化された知能ロボットは、人間と多少似た動きをすることになります。

統計的には、TAVI 方式は、6 つの典型的なタスクにおいて触覚または視覚フィードバックのみを使用する方式よりも大幅に優れています。

触覚情報のないAVI方式と比較すると、TAVIの平均成功率は135%増加し、画像+触覚報酬モデル方式と比較すると2倍になりました。

視覚と触覚の混合モードを使用する T-DEX トレーニング方法の成功率は、TAVI の 4 分の 1 未満です。

TAVI によって訓練されたロボットは強力な一般化能力も備えており、これまで見たことのない物体に対するタスクを完了することができます。

「ボウルを拾う」と「箱に詰める」という2つのタスクにおいて、ロボットが未知の物体に直面した際の成功率は半分以上でした。

さらに、TAVI方式で訓練されたロボットは、さまざまなタスクを優れた方法で完了できるだけでなく、複数のサブタスクを連続して実行することもできます。

堅牢性の面では、研究チームはカメラの角度を調整してテストを実施しましたが、ロボットは依然として高い成功率を維持しました。

では、TAVI法はどのようにしてこの効果を達成するのでしょうか?

視覚情報を用いたロボットの性能評価

TAVIの核となるのは、視覚的なフィードバックを利用してロボットを訓練することであり、その作業は主に3つのステップに分かれています。

最初のステップは、視覚と触覚という 2 つの次元から人間が提供するデモンストレーション情報を収集することです。

収集された視覚情報は、その後の学習プロセスで使用するための報酬関数を構築するために使用されます。

このプロセス中、システムは比較学習を使用して、タスクを完了するのに役立つ視覚的特徴を取得し、ロボットのアクションの完了を評価します。

その後、ロボットは強化学習を通じてトレーニングされ、触覚情報と視覚フィードバックを組み合わせて、高い完了スコアを達成するまで繰り返し試行できるようになります。

TAVI の学習は段階的なプロセスです。学習ステップが増えるにつれて、報酬関数はより完璧になり、ロボットの動きはより正確になります。

TAVIの柔軟性を向上させるために、研究チームは残余戦略も導入しました。

基本戦略と異なる点に遭遇した場合、最初からやり直す必要はなく、異なる部分だけを学習すれば済みます。

アブレーション実験の結果は、残余戦略がなく、ロボットが毎回ゼロから学習しなければならない場合、タスクを完了する成功率が低下することを示しています。

具現化された知能に興味があるなら、研究チームの論文を読んで詳細を知ることができます。

論文アドレス: https://arxiv.org/abs/2309.12300GitHub。

プロジェクトページ: https://github.com/irmakguzey/see-to-touch.

<<:  このロボットはバッテリーなしで「自走」でき、バッテリー寿命は無制限です | ワシントン大学

>>:  Amazon が企業による生成 AI の利用を支援する新機能と Bedrock を発表

推薦する

マルチエージェントコラボレーションフレームワーク:人工知能の次の方向性と課題

人間社会は複雑なマルチエージェントシステムであり、各個人は独自の目標、行動、信念、好みを持ち、共通の...

スタートラインで勝つ: データサイエンスに必須の 5 つのスキル

データサイエンスの分野は競争が激しく、人々はますます多くのスキルと経験を急速に身につけています。 「...

中国科学技術大学が提案したCNNとTransformerのデュアルネットワークモデルの精度は84.1%にも達する

[[416636]] Transformer と CNN はどちらも独自の利点を持ち、視覚表現を処理...

プライベートUNIT学習ノート - 対話システムの構築を簡単に始めることができます

対話システムの構築は比較的専門的で複雑なプロセスであり、通常は 3 つの主要な段階に分かれています。...

...

AI投資を最大限に活用するための6つのステップ

人工知能は、将来の発展にとって大きな破壊的技術の 1 つであるとよく考えられています。これにより、多...

多くの場所でAI顔認識の使用が制限されており、監視は技術開発のペースに追いついています

最近、南京、江蘇省、天津などではAI顔認識技術の使用を禁止し始めている。 11月末、南京市のある男性...

AIに感情を与えることは本当に重要なのでしょうか?

「合成感情」は人工知能の発展を妨げるのか?私たちは他の人とコミュニケーションをとるとき、通常は直接...

AI がソフトウェアをテストし、バグを修正できるようになれば、プログラマーの仕事は楽になるのでしょうか?

10月18日のニュース、単純な手作業から複雑な法的判断や医療診断まで、ロボットと人工知能が驚くべき...

2030 年までに AI と私たちの世界はどうなるでしょうか?

2030年までに、私たちの世界は変わるでしょう。人工知能 (AI) は、スマート シティ、モノのイ...

「顔認識」はあなたの「顔」を盗む

3月15日にも、別の悪徳業者が監視カメラで摘発されたが、消費者の関心を最も集めたニュースは「顔情報の...

...

...