NYU の具現化知能における新たな進歩: 視覚的なフィードバックで缶を開ける方法を学習し、タスクの成功率が 135% 向上、LeCun 氏はそれを好意的に評価

NYU の具現化知能における新たな進歩: 視覚的なフィードバックで缶を開ける方法を学習し、タスクの成功率が 135% 向上、LeCun 氏はそれを好意的に評価

ロボットがペンチで簡単にワイヤーを切る様子をご覧ください。

あっという間に鉄の箱の蓋が開きました。

さらに、物体を掴むなどの作業も簡単に完了できます。

このロボットの背後には、ニューヨーク大学とメタ AI 研究所が立ち上げた最新の具現化された知能の成果があります。

研究者らは、視覚と触覚を組み合わせてロボットのタスク遂行効率を2倍以上に高めるTAVIと呼ばれる新しいトレーニング方法を提案した。

現在、研究チームの論文は公開されており、関連コードはオープンソース化されています。

このロボットの性能を見て、Meta 社の主任科学者 LeCun 氏は、これは驚くべき進歩だと思わずにいられませんでした。

では、この方法を使用して訓練されたロボットは他に何ができるのでしょうか?

取り出しやすく、出し入れも簡単

重ねられた2つのボウルを分離し、上のボウルを取り出すことができます。

注意深く観察すると、分離プロセス中にロボットの手が追跡動作を行い、黄色のボウルが緑色のボウルの内壁に沿って滑ることがわかります。

このロボットは「分割」だけでなく「結合」もできます。

ロボットは赤い物体を拾い上げ、それを紫色の蓋の中に正確に置きました。

または、消しゴムを裏返します。

大きな消しゴムを拾い、下のボックスを使って角度を調整するのが見えました。

なぜもっと指を使わなかったのかはわかりませんが、結局は道具の使い方を学びました。

つまり、TAVI 方式で訓練された具現化された知能ロボットは、人間と多少似た動きをすることになります。

統計的には、TAVI 方式は、6 つの典型的なタスクにおいて触覚または視覚フィードバックのみを使用する方式よりも大幅に優れています。

触覚情報のないAVI方式と比較すると、TAVIの平均成功率は135%増加し、画像+触覚報酬モデル方式と比較すると2倍になりました。

視覚と触覚の混合モードを使用する T-DEX トレーニング方法の成功率は、TAVI の 4 分の 1 未満です。

TAVI によって訓練されたロボットは強力な一般化能力も備えており、これまで見たことのない物体に対するタスクを完了することができます。

「ボウルを拾う」と「箱に詰める」という2つのタスクにおいて、ロボットが未知の物体に直面した際の成功率は半分以上でした。

さらに、TAVI方式で訓練されたロボットは、さまざまなタスクを優れた方法で完了できるだけでなく、複数のサブタスクを連続して実行することもできます。

堅牢性の面では、研究チームはカメラの角度を調整してテストを実施しましたが、ロボットは依然として高い成功率を維持しました。

では、TAVI法はどのようにしてこの効果を達成するのでしょうか?

視覚情報を用いたロボットの性能評価

TAVIの核となるのは、視覚的なフィードバックを利用してロボットを訓練することであり、その作業は主に3つのステップに分かれています。

最初のステップは、視覚と触覚という 2 つの次元から人間が提供するデモンストレーション情報を収集することです。

収集された視覚情報は、その後の学習プロセスで使用するための報酬関数を構築するために使用されます。

このプロセス中、システムは比較学習を使用して、タスクを完了するのに役立つ視覚的特徴を取得し、ロボットのアクションの完了を評価します。

その後、ロボットは強化学習を通じてトレーニングされ、触覚情報と視覚フィードバックを組み合わせて、高い完了スコアを達成するまで繰り返し試行できるようになります。

TAVI の学習は段階的なプロセスです。学習ステップが増えるにつれて、報酬関数はより完璧になり、ロボットの動きはより正確になります。

TAVIの柔軟性を向上させるために、研究チームは残余戦略も導入しました。

基本戦略と異なる点に遭遇した場合、最初からやり直す必要はなく、異なる部分だけを学習すれば済みます。

アブレーション実験の結果は、残余戦略がなく、ロボットが毎回ゼロから学習しなければならない場合、タスクを完了する成功率が低下することを示しています。

具現化された知能に興味があるなら、研究チームの論文を読んで詳細を知ることができます。

論文アドレス: https://arxiv.org/abs/2309.12300GitHub。

プロジェクトページ: https://github.com/irmakguzey/see-to-touch.

<<:  このロボットはバッテリーなしで「自走」でき、バッテリー寿命は無制限です | ワシントン大学

>>:  Amazon が企業による生成 AI の利用を支援する新機能と Bedrock を発表

ブログ    

推薦する

マスク氏:プログラマーの62%が人工知能が武器化されると考えている

常に人工知能の脅威論を支持してきたシリコンバレーの「鉄人」マスク氏は、今回、プログラマーたちの間で支...

信頼できる AI はどのように発展すべきでしょうか?

現在、人工知能の応用範囲と深さは絶えず拡大しており、情報インフラの重要な部分になりつつあります。しか...

青島市と銀河水滴が共同でAIアート応用イノベーション実験室を建設

最近、2020年中国(青島)芸術博覧会の期間中、青島の「ダブル募集・ダブル紹介」特別イベントが開催さ...

TikTokが米メディアにアルゴリズムの原則を導入:まずは8つの人気動画を使ってユーザーを理解する

人気の短編動画アプリ「TikTok」(Douyinの海外版)は、主にアルゴリズムのおかげで、世界中で...

...

GPT-4 が「Who is the Undercover」ボードゲームに大混乱を引き起こします。会話はリアルだが、人間らしさにはまだ改善の余地がある

生成 AI 研究が新たな活力を得ています。韓国チームは、GPT に「Spyfall」と呼ばれるギャン...

Google、Facebook、Baiduはディープラーニングのフレームワークをめぐって競争している

[[226860]]タイトル画像提供:Visual China最近、海外の多くの企業で興味深い変化が...

AIと自動化はCOVID-19後のビジネス成功の鍵

COVID-19 パンデミックが発生する前は、ビジネスリーダーたちは、ビジネス運営の最適化、収益性の...

ゲーム「原神」では実際に深層強化学習が使われ、オープンソース化されている

[[425402]] 『原神』で魚が釣れないとまだ悩んでいますか?テイワットでの釣りについての遅れば...

顔認識は、セキュリティ市場におけるおやつか定番か?

ITS114の統計によると、2019年のわが国のセキュリティとスノーブライトプロジェクトの数千万プ...

...

トポロジカルデータ分析(TDA)は、人工知能のブラックボックスを破ると期待される魔法のアルゴリズムです。

本稿では、トポロジカルデータ分析 (TDA) の基本原理を紹介し、事例を示し、この方法が視覚分析を効...

...

デジタルヘルスと医療AIベンチャーキャピタル投資は2021年第1四半期に42億ドルに達した

CB Insightsのデータによると、遠隔医療は2021年第1四半期に139件の取引で過去最高の4...

Antの信用リスク管理の実践

1. 信用リスク管理業務の背景と事例まず、当社の事業シナリオについて簡単にご紹介させていただきます。...