NYU の具現化知能における新たな進歩: 視覚的なフィードバックで缶を開ける方法を学習し、タスクの成功率が 135% 向上、LeCun 氏はそれを好意的に評価

NYU の具現化知能における新たな進歩: 視覚的なフィードバックで缶を開ける方法を学習し、タスクの成功率が 135% 向上、LeCun 氏はそれを好意的に評価

ロボットがペンチで簡単にワイヤーを切る様子をご覧ください。

あっという間に鉄の箱の蓋が開きました。

さらに、物体を掴むなどの作業も簡単に完了できます。

このロボットの背後には、ニューヨーク大学とメタ AI 研究所が立ち上げた最新の具現化された知能の成果があります。

研究者らは、視覚と触覚を組み合わせてロボットのタスク遂行効率を2倍以上に高めるTAVIと呼ばれる新しいトレーニング方法を提案した。

現在、研究チームの論文は公開されており、関連コードはオープンソース化されています。

このロボットの性能を見て、Meta 社の主任科学者 LeCun 氏は、これは驚くべき進歩だと思わずにいられませんでした。

では、この方法を使用して訓練されたロボットは他に何ができるのでしょうか?

取り出しやすく、出し入れも簡単

重ねられた2つのボウルを分離し、上のボウルを取り出すことができます。

注意深く観察すると、分離プロセス中にロボットの手が追跡動作を行い、黄色のボウルが緑色のボウルの内壁に沿って滑ることがわかります。

このロボットは「分割」だけでなく「結合」もできます。

ロボットは赤い物体を拾い上げ、それを紫色の蓋の中に正確に置きました。

または、消しゴムを裏返します。

大きな消しゴムを拾い、下のボックスを使って角度を調整するのが見えました。

なぜもっと指を使わなかったのかはわかりませんが、結局は道具の使い方を学びました。

つまり、TAVI 方式で訓練された具現化された知能ロボットは、人間と多少似た動きをすることになります。

統計的には、TAVI 方式は、6 つの典型的なタスクにおいて触覚または視覚フィードバックのみを使用する方式よりも大幅に優れています。

触覚情報のないAVI方式と比較すると、TAVIの平均成功率は135%増加し、画像+触覚報酬モデル方式と比較すると2倍になりました。

視覚と触覚の混合モードを使用する T-DEX トレーニング方法の成功率は、TAVI の 4 分の 1 未満です。

TAVI によって訓練されたロボットは強力な一般化能力も備えており、これまで見たことのない物体に対するタスクを完了することができます。

「ボウルを拾う」と「箱に詰める」という2つのタスクにおいて、ロボットが未知の物体に直面した際の成功率は半分以上でした。

さらに、TAVI方式で訓練されたロボットは、さまざまなタスクを優れた方法で完了できるだけでなく、複数のサブタスクを連続して実行することもできます。

堅牢性の面では、研究チームはカメラの角度を調整してテストを実施しましたが、ロボットは依然として高い成功率を維持しました。

では、TAVI法はどのようにしてこの効果を達成するのでしょうか?

視覚情報を用いたロボットの性能評価

TAVIの核となるのは、視覚的なフィードバックを利用してロボットを訓練することであり、その作業は主に3つのステップに分かれています。

最初のステップは、視覚と触覚という 2 つの次元から人間が提供するデモンストレーション情報を収集することです。

収集された視覚情報は、その後の学習プロセスで使用するための報酬関数を構築するために使用されます。

このプロセス中、システムは比較学習を使用して、タスクを完了するのに役立つ視覚的特徴を取得し、ロボットのアクションの完了を評価します。

その後、ロボットは強化学習を通じてトレーニングされ、触覚情報と視覚フィードバックを組み合わせて、高い完了スコアを達成するまで繰り返し試行できるようになります。

TAVI の学習は段階的なプロセスです。学習ステップが増えるにつれて、報酬関数はより完璧になり、ロボットの動きはより正確になります。

TAVIの柔軟性を向上させるために、研究チームは残余戦略も導入しました。

基本戦略と異なる点に遭遇した場合、最初からやり直す必要はなく、異なる部分だけを学習すれば済みます。

アブレーション実験の結果は、残余戦略がなく、ロボットが毎回ゼロから学習しなければならない場合、タスクを完了する成功率が低下することを示しています。

具現化された知能に興味があるなら、研究チームの論文を読んで詳細を知ることができます。

論文アドレス: https://arxiv.org/abs/2309.12300GitHub。

プロジェクトページ: https://github.com/irmakguzey/see-to-touch.

<<:  このロボットはバッテリーなしで「自走」でき、バッテリー寿命は無制限です | ワシントン大学

>>:  Amazon が企業による生成 AI の利用を支援する新機能と Bedrock を発表

ブログ    

推薦する

...

...

...

隠れた表現を視覚化することでニューラルネットワークをより深く理解する

この記事では、隠し表現の視覚化を使用して、ニューラル ネットワークのトレーニング プロセスをより直感...

...

機械学習の時代に神経科学者はいかにして人間の思考を読み取り解読できるか

[[408373]]この記事では主に機械学習 (ML) と機能的磁気共鳴画像法 (fMRI) の応用...

ビジネスインテリジェンスの歴史と発展についてお話ししましょう

1865 年に、リチャード・ミラー・デベンスは著書『A Complete Collection of...

...

タオバオのメイン検索リコールシナリオにおけるマルチモーダル技術の探究

検索リコールは検索システムの基礎として、効果向上の上限を決定します。私たちが直面している主な課題は、...

...

...

AIとIoTが建設業界に価値をもたらす方法

モノのインターネット (IoT) センサーは主に運用スタックの可視性を提供し、リアルタイムで正確な運...

天地万能?疫病の流行に直面して、これらの AI は静かにあなたを守っています...

COVID-19の流行は深刻ですが、多くの新しい技術の助けにより、予防と制御の対策は何年も前と同じ...

AIと胚の融合?システム生物学者のパトリック・ミュラーは双子ネットワークを使ってゼブラフィッシュの胚を研究している

動物の発育過程において、胚は時間の経過とともに複雑な形態変化を遂げます。研究者は、発育の時間と速度を...

AI技術を活用してより強力な処理チップを開発

現在、ますます多くのスタートアップ企業と大手半導体企業が新しい AI チップの発売を競っています。 ...