AIがタンパク質構造を予測し、サイエンス誌とネイチャー誌の年間技術革新として掲載され、無限の可能性を秘めている

AIがタンパク質構造を予測し、サイエンス誌とネイチャー誌の年間技術革新として掲載され、無限の可能性を秘めている

2021 年に AI 分野で最も画期的な賞を授与するとしたら、誰を選びますか? 「サイエンス」と「ネイチャー」が出した答えは、どちらも「タンパク質構造予測」です。

今年7月、タンパク質構造を予測する2つの主要なAIアルゴリズムが相次いでオープンソース化された。1つはDeepMind社の「AphaFold2」、もう1つはワシントン大学などが開発した「RoseTTAFold」である。現在、これら 2 つのアルゴリズムは、Science によって 2021 年の画期的な成果として評価されています。

タンパク質中のアミノ酸の長い鎖がねじれ、折り畳まれ、絡み合って複雑な三次元構造を形成し、その解読が困難、あるいは不可能になることはよく知られています。数十年にわたり、科学者たちは、遺伝子配列からタンパク質の構造形状を予測するだけで、生命の仕組みに関する新たな洞察の世界を切り開くことを望んできたが、進歩は遅い。

DeepMind が、タンパク質の構造を計算によって予測する方法が初めて発見されたと発表したまでは。 AIは、類似の構造を知らなくても、原子レベルでタンパク質の構造を正確に予測できます。

[[441192]]

DeepMindによると、AlphaFoldは定期的に原子レベルでタンパク質構造を予測できるという。技術的には多重配列アライメントとディープラーニングアルゴリズム設計を使用し、タンパク質構造に関する物理的および生物学的知識を組み合わせて予測結果を向上させる。 AlphaFold の画期的な研究成果は、研究者が特定の病気を引き起こすメカニズムを解明し、薬剤の設計、農作物の収穫量の増加、プラスチックを分解できる「スーパー酵素」の開発への道を開くのに役立つでしょう。

AlphaFold の論文は 7 月に Nature 誌に掲載されました。論文のアドレスは次のとおりです: https://www.nature.com/articles/s41586-021-03819-2

最近、Alphafoldの創設者の一人であるジョン・ジャンパー氏も、Nature誌によって2021年のトップ10科学者の一人に選ばれました。

[[441193]]

ジョン・ジャンパー

2018年にタンパク質構造予測コンペティション(CASP)で注目を集めた第1世代のAlphaFoldから、2021年にAlphaFold2が正式にオープンソースリリースされるまで、ジョン・ジャンパーはDeepMindの研究チームを率いて数々の困難を克服し、AlphaFold2が2/3のタンパク質構造予測という優れた結果を達成することを可能にしました。

同じくタンパク質構造予測研究を行っているRoseTTAFoldも、Science誌の2021年のブレークスルーに選ばれました。

RoseTTAFold は、ワシントン大学医学部のタンパク質設計研究所がハーバード大学、テキサス大学サウスウェスタン医療センター、ケンブリッジ大学、ローレンス・バークレー国立研究所などの機関と共同で開発した、ディープラーニングに基づくタンパク質予測ツールです。 RoseTTAFold は、AlphaFold2 に匹敵する超高精度を実現しますが、より高速で、必要なコンピューター処理能力も少なくなります。

RoseTTAFold は Science 誌に掲載されました。論文のアドレスは https://www.science.org/doi/abs/10.1126/science.abj8754 です。

構造的には、RoseTTAFold は 3 トラック ニューラル ネットワークであり、タンパク質配列のパターン、アミノ酸同士の相互作用、およびタンパク質の可能な 3 次元構造を考慮できます。この構造では、1 次元、2 次元、3 次元の情報が行き来し、ニューラル ネットワークはタンパク質の化学部分とその折り畳まれた構造についての推論に集中することができます。

驚くべきことに、12年前にはタンパク質構造予測の問題は決して解決されないと信じる科学者もいましたが、今日ではそれが現実になっています。人工知能がもたらした最大の進歩は、「不可能」を「可能」に変えることです。

より広い視点から見ると、AIはタンパク質構造予測に変化をもたらすだけでなく、科学研究分野全体に活用できる大きな可能性を秘めています。そのため、今年はAI + 数学、AI + 化学、AI + 医学など、AI for Scienceのテーマが注目を集めています。

おそらく、今後 2 年間で AI + 科学研究においてさらなるブレークスルーが起こり、誰もがそれに細心の注意を払うことになるでしょう。

<<:  中国科学院研究員蔡少偉:SATソルバーEDA基本エンジン

>>:  人間の脳細胞は、マトリックスのように、AIよりも速く、エネルギー効率よく、ペトリ皿の中でゲームをすることを学ぶ

ブログ    
ブログ    

推薦する

IT運用保守プラットフォームアルゴリズムの背後にある2つの「神の助け」

[51CTO.comからの原文] インテリジェント運用保守(AIops)は、IT運用保守の分野で最...

...

5つの主要な知能分野における知識グラフの応用の目録

1. セマンティックマッチングセマンティック マッチングは、検索の推奨、インテリジェントな質問と回答...

2021年には、神経科学AIにいくつかの大きなトレンドがあります

新年が私たちに手を振っています。素晴らしい革命の伝統を引き継ぎ、最新の AI 専門家の予測レポートを...

機械学習と人工知能がサイバーセキュリティを向上させる方法

[[375875]]今日、サイバー攻撃はますます蔓延しており、組織が導入しているセキュリティ ツール...

2019年自然言語処理フロンティアフォーラム: 機械による「読む、書く、話す、翻訳する」に焦点を当て、自然言語処理の未来を探る

人工知能の本質は、機械が人間のように世界を認識し理解できるようにすることです。言語と知識を研究する自...

XiaoIceが超自然音声技術をリリースし、シリーズA資金調達の完了を発表

7月12日、XiaoIce社は新たな超自然音声技術をリリースした。この技術により、AI 音声の自然さ...

Unity が開発者向け AI ソフトウェア マーケットプレイス AI Hub を立ち上げ、株価が 15% 上昇

6月28日、Unityは開発者向けAIソフトウェアマーケット「AI Hub」を正式に立ち上げ、AIソ...

大型モデルを実行するカード、パフォーマンスは4090の80%に達し、価格は半分だけ:陳天奇TVMチームが制作

最近、テクノロジー分野の多くの人々がコンピューティング能力について懸念しています。 OpenAI C...

...

ベクトル監視なしのベクトル画像生成アルゴリズムがCVPR 2021に選出

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

デジタルビジネスにおける AI の 6 つの設計原則

人工知能 (AI) は、現在人間が行っている意思決定やタスクを補強し、自動化する機能を備えているため...

金属の巨人からディープラーニングまで、人工知能の(ごく)短い歴史

[[202011]]クレタ島を海賊や侵略者から守るために、人々は巨大な青銅の戦士タロスを創造しました...

...