ボストン住宅データセットに基づくシンプルなMLP回帰モデルのトレーニング

ボストン住宅データセットに基づくシンプルなMLP回帰モデルのトレーニング

[[422501]]

多層パーセプトロン(MLP)は非常に長い歴史を持っています。多層パーセプトロン(MLP)はディープニューラルネットワーク(DNN)の基本アルゴリズムです。

MLPの基礎

  • 目的: 単純な回帰/分類タスク用の通常のニューラル ネットワーク (多層パーセプトロンなど) と Keras を作成する

MLP構造

  • 各MLPモデルは、入力層、複数の隠れ層、および出力層で構成されています。
  • 各層のニューロンの数は無制限である

1つの隠れ層を持つMLP

- 入力ニューロンの数: 3 - 隠しニューロンの数: 4 - 出力ニューロンの数: 2

回帰タスクのためのMLP

  • ターゲット(「y」)が連続している場合
  • 損失関数と評価指標には、通常、平均二乗誤差 (MSE) が使用されます。
  1. tensorflow.keras.datasetsからboston_housing をインポートします
  2. (X_train、y_train)、(X_test、y_test) = boston_housing.load_data()

データセットの説明

  • ボストン住宅データセットには合計506のデータインスタンス(トレーニング用404、テスト用102)があります。
  • 13 の属性 (特徴) が「特定の場所の住宅の中央値」を予測します
  • ファイル番号: https://keras.io/datasets/

1. モデルを作成する

  • KerasモデルオブジェクトはSequentialクラスを使用して作成できます。
  • 最初は、モデル自体は空です。これは、追加のレイヤーを「追加」してコンパイルすることによって行われます。
  • ドキュメント: https://keras.io/models/sequential/
  1. tensorflow.keras.modelsからSequential をインポートします
  2.  
  3. モデル = シーケンシャル()

1-1. レイヤーの追加

  • Kerasレイヤーをモデルに「追加」することができます
  • レイヤーを追加することは、レゴブロックを積み重ねるようなものである
  • ドキュメント: https://keras.io/layers/core/
  1. tensorflow.keras.layersからActivation、Dense をインポートします
  2. #それぞれ 10 個のニューロンを持つ2 つの隠れ層を持つKeras モデル
  3. model. add (Dense(10, input_shape = (13,))) # 入力層 => input_shape は明示的に指定する必要があります
  4. model.add(アクティベーション( 'シグモイド' ))
  5. model.add (Dense(10)) # 隠し層 =>のみ 出力ディメンションを指定する必要があります
  6. model.add(アクティベーション( 'シグモイド' ))
  7. model.add (Dense(10)) # 隠し層 =>のみ 出力ディメンションを指定する必要があります
  8. model.add(アクティベーション( 'シグモイド' ))
  9. model.add (Dense(1)) #出力層 =>出力次元= 1回帰問題ので
  10. # これは上記のコードブロック同等です
  11. モデルを追加します(Dense(10, input_shape = (13,), activation = 'sigmoid' ))
  12. モデルを追加します(Dense(10, activation = 'sigmoid' ))
  13. モデルを追加します(Dense(10, activation = 'sigmoid' ))
  14. モデル.add (密(1))

1-2. モデルのコンパイル

  • Kerasモデルはトレーニング前に「コンパイル」する必要があります
  • 損失タイプ(関数)とオプティマイザを指定する必要があります
  • ドキュメント(オプティマイザー): https://keras.io/optimizers/
  • ドキュメント(損失): https://keras.io/losses/
  1. tensorflow.kerasからオプテ​​ィマイザーをインポートする
  2.  
  3. sgd = optimizers.SGD(lr = 0.01) # 確率的勾配降下法オプティマイザー
  4.  
  5. model.compile(optimizer = sgd, loss = 'mean_squared_error' , metrics = [ 'mse' ]) #回帰問題では、平均二乗誤差(MSE)よく使用されます

モデルの概要

  1. モデル.要約()
  1. odel: 「シーケンシャル」  
  2. _________________________________________________________________
  3. レイヤー(タイプ)出力形状パラメータ#
  4. =================================================================
  5. 密集(密集)(なし、10)140
  6. _________________________________________________________________
  7. アクティベーション(アクティベーション)(なし、10)0
  8. _________________________________________________________________
  9. 密_1 (密) (なし、10) 110
  10. _________________________________________________________________
  11. activation_1 (アクティベーション) (なし、10) 0
  12. _________________________________________________________________
  13. 密_2 (密) (なし、10) 110
  14. _________________________________________________________________
  15. activation_2 (アクティベーション) (なし、10) 0
  16. _________________________________________________________________
  17. 密_3 (密) (なし、1) 11
  18. _________________________________________________________________
  19. 密_4 (密) (なし、10) 20
  20. _________________________________________________________________
  21. 密_5 (密) (なし、10) 110
  22. _________________________________________________________________
  23. 密_6 (密) (なし、10) 110
  24. _________________________________________________________________
  25. 密_7 (密) (なし、1) 11
  26. =================================================================
  27. 合計パラメータ: 622
  28. トレーニング可能なパラメータ: 622
  29. トレーニング不可能なパラメータ: 0
  30. _________________________________________________________________

2. トレーニング

  • 提供されたトレーニングデータを使用してモデルをトレーニングする
  1. model.fit(X_train、y_train、バッチサイズ = 50、エポック = 100、詳細 = 1)

3. 評価

  • Kerasモデルはevaluate()関数を使って評価できる。
  • 評価結果はリストに含まれる
  • ドキュメント: https://keras.io/metrics/
  1. 結果 = model.evaluate(X_test, y_test)
  1. print(model.metrics_names) #モデル使用しているメトリック名リスト
  2. print(results) #計算されたメトリック実際の数値

  1. print( '損失: ' , 結果[0])
  2. print( 'mse:' , 結果[1])

<<:  人工知能のコスト問題をどう解決するか?顔認識によって情報セキュリティはどのように確保されるのでしょうか?

>>:  シンガポールは路上での悪質な行為を検知するためにロボットを使っている

ブログ    

推薦する

AIが悪になる危険性を排除する方法

AI テクノロジーを悪とみなす個人、政府、企業が増えるにつれ、AI が善良な存在であることを保証する...

アルゴリズム | 再帰の深い理解、あなたは再帰を誤解しています

再帰は、プログラミングの本で説明するのが最も難しい部分である魔法のアルゴリズムです。これらの本では通...

機械学習が金融サイバー犯罪と戦う方法: 人工知能はセキュリティの洞察にとって不可欠

過去数か月間、コロナウイルス関連の請求による多大なストレスの期間中、失業保険制度から数百万ドルが盗ま...

AIアルゴリズムの包囲とフードデリバリー業者の「ブレイクアウト」

システムに閉じ込められた配達員たちは反撃している。最近、海外のテクノロジーメディアWiredは、プラ...

テレンス・タオ:不等式定理を証明するためにGPT-4を使いました。論文はarXivにアップロードされます。

有名な数学者テレンス・タオ氏はここ数か月、ChatGPTやGPT-4などのAIツールを使用して数学の...

自動化がビジネスに具体的な価値をもたらす方法

[[404690]]長年にわたり、多くの企業がロボット、自動化、人工知能などのテクノロジーからより多...

IoTロボットが製造業と医療現場の危険を防止

IoT とロボティクスはそれぞれ単独でもビジネス組織に多くの利点をもたらしますが、組み合わせて使用​...

AIのヒット曲:主人公はプログラマー、作曲家は気を散らされている

米国の著作権法では「人間」という言葉はほとんど使われておらず、この問題を扱った訴訟は歴史上ほとんど起...

ハードウェアとコードを分離し、APIを安定化したPyTorch Lightning 1.0.0が正式リリース

Keras と PyTorch はどちらも初心者にとても優しいディープラーニング フレームワークです...

専門家の視点:量子コンピューティングの開発動向

量子コンピューティングとは、量子理論の原理に基づいたコンピューター技術の開発に焦点を当てた研究分野を...

医療機器における人工知能:これらは新たな産業アプリケーションです

人工知能により、研究者や製造業者は生活の質を向上させることができます。 [[419960]]人工知能...

高度な分析とコンピューティング技術の出現が世界のインテリジェントアプリケーション市場を牽引

世界的なスマート アプリケーション市場の成長は、高度なコンピューティングおよび分析テクノロジによって...

...

アクセンチュア:AIが新しいUIとなり、7年後にはスクリーンレス時代が到来

編集者注: Amazon の Echo スマート スピーカーや自動運転車などのスクリーンレス ユーザ...