人工知能はこれからどのように発展していくのでしょうか?

人工知能はこれからどのように発展していくのでしょうか?

人工知能、略してAIの起源は非常に古い。1956年の夏、アメリカのハノーバーという小さな町に、コンピュータの父と呼ばれるチューリングが提唱したチューリングテスト(チューリングテストとは、テストを受けた人の30%以上が、自分は機械ではなく人間とコミュニケーションしていると信じれば、機械はテストに合格したと言えるというテスト)に非常に興味を持った科学者や愛好家のグループがいた。彼らは町に集まり、この会議を通じて人工知能に関する問題を議論し解決しようとしたが、会議での1、2か月の議論の後、人工知能は彼らが考えていたほど単純ではなく、会議後に実質的な進歩がなかったことがわかった。その年は有名な人工知能元年だった。

[[322606]]

1956年: ダートマス会議でAI分野が立ち上げられ、「人工知能」という用語が生まれました。

しかし、この熱心なグループは、コンピューターの発達とともに発展してきた科学である人工知能の追求をあきらめてはいません。コンピューターの初期の発達が、人工知能への道を切り開いているようです。

AI開発のタイムライン

コンピュータの発展に伴い、人工知能の発展はいくつかの厳しい冬と頂点を経験してきました。この過程で、人々は人工知能の将来性を歓迎しましたが、その技術的な限界と実現までの期間が遠いために、注目されなくなってしまいました。

2016年、Googleの人工知能マシン「AlphaGo」が囲碁世界チャンピオンのイ・セドルを4対1で破りました。それ以来、人工知能は一般大衆に知られるようになり、人工知能熱の波が高まり始めました。 2018年までに、データ駆動型ディープネットワークに依存するテクノロジーは頭打ちになり始めました。純粋なAI企業のテクノロジー実装と商業収益化能力はますます困難になり、テクノロジーとシナリオを統合する必要がありました。使用シナリオとサポートサービスプロセスのないAI企業は徐々に淘汰されました。多くの大企業は使用シナリオで大きな優位性を持っていました。たとえば、Hikvision Monitoringは人工知能のサポートにより、業界の利点を最大限に活用しています。しかし、大企業にも悩みはあります。人工知能研究への投資は莫大ですが、市場機会と企業評価を獲得するためには、企業は人工知能に資金を投入し続けなければなりません。

人工知能業界は膠着状態に陥っているようだ。今後どこへ向かうべきだろうか?人工知能技術と収益化の困難を克服したいのであれば、現在の産業の発展に合わせて人工知能を徐々に導入する必要があります。例えば、5Gの発展により、世界は新たな発展の節目を迎えたようです。この時、人工知能は5Gの基礎を組み合わせて活用し、業界を「エンパワーメント」する必要があります。いわゆる「エンパワーメント」とは、業界内での独自の地位を見つけることです。生き残るためには、利益を上げなければなりません。結局のところ、良い猫とはネズミを捕まえることができる猫なのです。

収益性を回復するために、最終的には人工知能がエンジニアリングの実践に適用されるでしょう。実際のプロジェクトでは、使用される特定の人工知能技術はプロジェクトのニーズによって異なります。主に実用的な問題の解決に基づいており、多くの場合、さまざまな学術的成果の組み合わせが必要です。このプロセスでは、特定の人工知能技術が使用されるかどうかは、その技術が需要解決をサポートできるかどうか、および会社のリソースのサポートの一致に応じて、さまざまな要因によって決定されます。

学術研究の分野では、人工知能に関して最も重要なのはアルゴリズムです。しかし、エンジニアリングの実践においては、すべてのエンジニアリングのニーズが最優先されるように再配置する必要があります。エンジニアリングのニーズを解決するには、複数の実行可能な人工知能ソリューションを提供することがますます重要になります。

国は人工知能大学院生の育成を加速させる

2020年3月、国は人工知能分野の人材を育成できる大学100校を開設し、 「『双一流』建設大学における学科融合の推進と人工知能分野の大学院生の育成加速に関する若干の意見」に関する通知を出した。人工知能は深い学習と研究を必要とするという観点から見ると、これは優秀な人材を育成するという目的に反しているように思える。結局のところ、人工知能は複雑な学際科学であり、より良い研究成果を生み出すには強力な工学知識の背景が必要である。しかし、新たに発表された大学は、伝統的な工学が強い重点大学ではない。もっと深く考えてみると、実はエンジニアリングの実践の方向性としては、ソリューション、さまざまな業界向けのソリューションに重点が置かれていることがわかります。さまざまな業界の知識を持つ人が人工知能に従事できるように訓練されれば、エンジニアリング研究に特化した人材よりも有利になるでしょう。

人工知能が市場や産業に復帰し、実用化されることは避けられない流れであるように思われます。

<<:  360 が顔認識分野に参入。「セキュリティ」の壁をどう克服するか?

>>:  マイクロソフトは、重大なセキュリティ脆弱性を97%の精度で特定できるAIシステムを開発した。

ブログ    
ブログ    

推薦する

センサーがなければ、電子自動化もロボットも存在しないでしょう。

センサーは、温度、湿度、光、その他の非電気量などの特定の物理的パラメータの変化を、電流、電圧などの別...

Python は AI のために生まれたわけではありません。Golang は今後 10 年間の人工知能を支配することになるでしょうか?

ここ数年、Python は人工知能とデータサイエンスの分野で最も人気のあるプログラミング言語になりま...

ハードコア! CES 2021 アワード: 労働者は仮想人間、口紅は AI アルゴリズムを追加、ロボットは毛皮で覆われる

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

2020 年の国内トップ 10 の人工知能イベントのレビュー: 政策と規制、技術的成果、産業への応用などを網羅。

人工知能業界では、今年多くの出来事がありましたが、その中には慎重に検討する価値のあるものもありました...

Google と OpenAI の新しい研究: ダーウィンの進化論を人工知能アルゴリズムの設計にどのように活用するか?

現代の機械知能は自然を模倣することに基づいています。この分野の主な目標は、人間が生物学的に持つ強力な...

GitHub Copilot の盗作が確認されました! GitHub: 私たちの AI はコードを「暗唱」しません

[[409261]] GitHub Copilot は、コードを自動生成するという強力な機能により、...

人工知能は10の新たな雇用を生み出す

25秒で何ができるでしょうか?人間の記者たちがまだショックを受けている間に、ロボットはデータマイニン...

馬化騰氏は「人工知能の4つの主要な発展傾向が今後10年間で世界を変えるだろう」と述べた。

今後10年間で世界を変える人工知能の4つの主要な発展トレンドの分析61歳のビル・ゲイツ氏は大学卒業生...

ユニバーサルミッション!清華大学、線形複雑性を実現するバックボーンネットワークFlowformerを提案|ICML2022

タスクの一般性は、基本モデル研究の中心的な目標の 1 つであり、ディープラーニング研究が高度なインテ...

機械学習論文を再現する際に注意すべき5つの問題

私が初めて機械学習に興味を持ったとき、論文を読んだり、それを実装したりすることに多くの時間を費やしま...

...

2021年の人工知能業界の予測

2020 年は激動の年であり、組織は数多くの課題に直面しました。 2021年に入り、人工知能業界は急...

...

ベイズ最適化の美しさ: 素晴らしいアルゴリズムの背後にある直感

[[345174]]計算コストが高く、必ずしも解析的な表現ではなく、導関数が不明な関数 f(x) が...