AIとビッグデータ2017「成長痛」

AIとビッグデータ2017「成長痛」

2017 年、人工知能とビッグデータの開発では次の 10 の成長痛が発生しました。

[[215674]]

1. 人工知能にはIQ基準がない

人工知能の分野で最も発展している分野の一つは自動運転車ですが、その理由は、L0からL5までのグローバル標準が確立されているからに他なりません。しかし、他の分野では、人工知能にはサブフィールドが多すぎ、標準化が相対的に不足しています。音声認識がどの程度成功とみなされるか、画像認識がどの程度優れているかを定量化することは困難です。人間には自分が賢いかどうかを評価するためのIQ値がありますが、AIにはそれがありません。業界標準が欠如しているということは、市場、メーカー、ユーザーが暗闇の中でしか前進できないことを意味します。

2. 人工知能がエッジを拡張

これまで、人工知能の応用は中央コンピューティングによってサポートされていましたが、アプリケーション需要の限界的な拡大により、モノのインターネットが人工知能の次の開発焦点となり、エッジコンピューティングがインテリジェンス分野の主役になり始めています。

3. スーパーコンピューティングとクラウドコンピューティングに組み込まれたAI

人工知能技術は、ユーザー レベルで拡大しているだけでなく、より深いコンピューティング ニーズにも拡大しています。クラウド コンピューティングとスーパー コンピューティング技術の発展により、人工知能は前例のない分野へと進化しています。人工知能の3大要素の一つである計算能力の発達により、人工知能はより多くのことに関与できるようになりました。

4. 人工知能は人気が高まっているが、定着していない

人工知能の限界要因は、産業応用がまだ発展していないことです。現在の主な応用は、検索、スマート音声アシスタント、スマートホームなど、周辺領域の小規模なアプリケーションであり、人工知能自体の利点はまったく発揮されていません。自動運転は準備に少なくとも3年かかり、業界のルールもまだ確定していない。全体的に見て、人工知能は単なる誇大宣伝であり、利益に変える力はない。

5. AIの活用は間違っている

人工知能と人間の雇用との間の対立が議題に上がった。人工知能の発展により人類に大規模な失業が発生することを懸念する人は多く、ホーキング博士を筆頭に業界関係者の多くは人工知能の発展が人類の破滅につながることを懸念している。こうした懸念には根拠がないわけではないが、人工知能は共有人工知能機器の運用や保守といった他の仕事も生み出すだろう。

6. ビッグデータブームは過ぎ去った

ビッグデータの台頭以来​​、人工知能がそれを凌駕していることは明らかです。つまり、ビッグデータが推進されていた時代は過ぎ去ったのです。かつてはビッグデータを標榜し、最高データ責任者の設置を義務付けていた企業も、5年後にはその勢いを失っています。ビッグデータの有効性が満足できるレベルにほど遠いという事実は、人々がビッグデータの取り扱いが難しいと考える理由の 1 つです。

7. データを最新に保つのが難しい

ビッグデータがインターネット以外の業界に参入する場合、直面する主な課題はデータ収集です。データの収集が不完全な場合、分析結果が無価値になる可能性があります。また、包括的な収集を行うと、収集コストが高くなりすぎる可能性があります。同時に、どの業界のビッグデータも、データの保存サイクルが短く、データの有効期限が切れやすいという問題に直面しています。

8. データは闇市場に流れ込む

ビッグデータ産業の発展によりデータの価値が高まり、ハッカーの主な攻撃対象はデータに集中するようになりました。企業は収集したデータをタイムリーに分類、処理、保存、分析する必要があるだけでなく、データのセキュリティについても責任を負う必要があります。ネットワーク環境が複雑化するにつれ、ブラックマーケットのデータ量が増加し、データ保護のコストも増加しています。

9. データ量の爆発的増加

非同期ビッグデータの管理 爆発的な増加を経験した後、企業はデータ処理時に直面する膨大な量のデータを選別してクリーニングする必要があります。しかし、データクリーニングプロセスにより、データ管理はより複雑になっています。非構造化データに含まれる意味は増加しており、データクリーニングにより有用な情報が削除され、見たい不完全な情報だけが残る可能性があります。このデータ管理方法は、最終的な処理結果に偏差をもたらします。

10. ビッグデータ商業化の島が形成される

各企業は独自のデータを持っていますが、これらのデータを商業的に使用する際には、個人のプライバシーや競争関係などの要因により、相互に通信されません。データの流動性とタイムリーな更新が不足していることの直接的な結果は、各企業のデータが異なり、孤立したデータが形成されることです。この孤立したデータは網羅性に欠けているため、ほとんどの企業は独自の偏った分析結果からしか答えを得ることができず、真のビッグデータとはほど遠いものです。

<<:  現時点では、ディープラーニング以外の実装方法を模索する必要がある。

>>:  アメリカの科学者が新技術を開発:ロボットが行動する前によく考えさせる

推薦する

...

自動化された機械学習: よく使われる 5 つの AutoML フレームワークの紹介

AutoML フレームワークによって実行されるタスクは、次のように要約できます。データを前処理して...

Stack Overflow は独自の生成 AI ツールを公開するためにスタッフの 28% を削減

これは ChatGPT が直接引き起こした大規模なレイオフである可能性があります。世界最大のプログラ...

プログラマーが面接でアルゴリズムについて素早く準備する方法

序文短い記事を書こうと決めたので、これがそれです。私がこの記事を書こうと思った理由は、Weibo 上...

AI による自動ラベル付けの普及により、データラベル作成者の職は失われるのでしょうか?

データ注釈業界では、「知能と同じくらい人工知能も存在する」という有名な格言があります。ラベル付けが必...

今検討する価値のある 21 のロボティック プロセス オートメーション (RPA) ツール

[[422760]] [51CTO.com クイック翻訳]事実によれば、ロボティック プロセス オー...

...

Microsoft OneDrive 3.0 が発表されました: 新しいデザイン、共有の改善、Copilot AI など

マイクロソフトは10月4日、新デザインと多くの機能改善をもたらし、Copilot AI機能を導入した...

C#DES アルゴリズムの概念と特性の簡単な分析

C# DES アルゴリズムは開発のセキュリティ部分として、その概念といくつかの簡単な歴史的起源を理解...

...

Google DeepMind、どのDNA変異が遺伝性疾患を引き起こすかを予測できる新しいモデルを開発

9月20日、Googleの人工知能チームDeepMindは、AlphaMissenseと呼ばれる新し...

浙江大学の呉飛氏とアリババの賈洋青氏が口論。AIの進化と年収100万ドルのどちらが本当なのか?

人工知能が再び人気を集めていることは間違いありません。第14次5カ年計画では、国家発展の戦略的支えと...

...

機械学習の概要

概要:この記事を読むと、次のことができるようになります。さまざまな種類の機械学習の問題を識別します。...

人工知能が世界をより安全な場所にする4つの方法

わずか数週間で、COVID-19パンデミックは私たちの日常生活を完全に変えてしまいました。多くの企業...