データサイエンティストもAIに置き換えられる可能性がある

データサイエンティストもAIに置き換えられる可能性がある

AI が人間の活動に取って代わるかどうかについての議論が激化するにつれ、データ サイエンティストは AI 支援による自動化の利点とリスクを経験し始めています。

AI があらゆるものを自動化するために使用されるという見通しに人々は不安を感じ始めています。 AI が一部のブルーカラー職 (ロボットなどによる) やホワイトカラー職 (自然言語生成などによる) を置き換える能力を実証した今、このテクノロジーを取り巻く文化的感受性が高まっています。

[[213687]]

これは、AI の影響について話すときに「自動化」などのほぼ同義語が使われるようになった理由を説明しているのかもしれません。 AI 駆動型アプリケーションの開発への自動化の導入について議論する際、一部の観察者は「運用化」、「生産化」、「拡張」、「加速」などの用語を好んで使用します。また、「繰り返し可能なワークフロー」などを構築するための「セルフサービス」ツールに関する議論も見られますが、これはワークフローの自動化における次の論理的なステップのように思えます。

「自動化」という恐ろしい言葉に対するこの嫌悪感は、データ サイエンティストでさえ、AI が自分たちの仕事を置き換える可能性について懸念し始めているという事実から生じているのかもしれません。このような文化的な時代精神を念頭に置いて、Andrew Brust 氏が最近投稿した Alteryx の「機械学習モデル」向けの新しい運用ツールでは、データ サイエンスにおける生産性向上のメリットだけでなく、データ サイエンスの開発、展開、最適化ワークフローにさまざまな程度で自動化を推進する他のベンダーのさまざまなソリューションについても優れた議論が行われています。

Wikibon の調査では、「データ サイエンスの開発者」が急増していることがわかりました。これは自動化の婉曲表現でもあります。ブリュースター氏は、データサイエンスのワークフローで人間を置き換えることには「メリットはほとんどない」と述べたが、不完全な機能が多く存在し、スキルの低いデータサイエンティストが対応しなければならない可能性があるのは明らかだ。

Alteryx のツールは、現在主流のデータ サイエンス ツール ベンダーが提供しているツールの中でも最先端のものであり、データ サイエンティストが自動化を期待できる方法をうまく示しています。

  • プロモーションおよび展開フェーズでは、コード不要の Alteryx Designer ツールが、機械学習モデル用にカスタマイズされた REST API と Docker イメージを自動的に生成します。
  • Alteryx の新しいツールは、最近 Yhat と提携して買収したデータ サイエンス モデル管理テクノロジを使用して、Alteryx Server Analytics プラットフォームにモデル実行を自動的に展開します。
  • Promote は、変化するアプリケーションのニーズに基づいて、各モデルのランタイム リソース消費を自動的にスケーリングできます。
  • デザイナー ワークフローは、新しいデータ インターフェイスを使用するように機械学習モデルを自動的にトレーニングし、自動再デプロイメントを容易にすることができます。
  • 代わりに、現在デプロイされているモデルのバージョンを追跡し、運用環境に適切な予測モデルが常に存在するようにすることで、モデル ガバナンスが自動的に確保されます。

おそらく、自動化の可能性を過大評価し、データ サイエンティストをこのような困難な立場に置くべきではないでしょう。むしろ、データ サイエンス自動化ツールは、少ないリソースでより多くの成果を上げるのに役立ちます。これらの機能により、反復的なタスクの負荷を軽減し、データ サイエンティストがより創造的で挑戦的な分野でスキルを伸ばすことが可能になります。自動化により、データ サイエンティストは、迫り来る専門職の労働力不足を回避できる可能性もあります。 MIT Technology Review の最近の記事が指摘しているように、一定レベルの自動化が達成されなければ、熟練した人材の不足により AI/ML 革命が頓挫する可能性があります。

熟練したデータ サイエンティストであっても、あらゆるコツを習得することはできません。そのため、モデルのハイパーパラメータを即座に最適化するのに役立つ自動化ツールが登場しています。

自動化は、データの開発、展開、管理プロセスのあらゆる部分に導入されています。より多くのデータ専門家が、データの取得、準備、クレンジング、配信などの反復可能なプロセスを加速するために、産業用レベルの自動化機能を採用しています。

<<:  90年代以降は人工知能で年間数百万ドルを稼ぐ、Google、Microsoft、BATの給与リストが明らかに

>>:  Tech Neo 11月号: コンテナプラットフォーム管理の実践

推薦する

...

機械学習と脳科学が次の10年間の教育発展をリードする

[51CTO.comよりオリジナル記事] 昨今人気の技術として、産業界における人工知能の応用が徐々に...

...

Huice: 大手 e コマース企業が使用しているスマート小売管理ソフトウェアの優れた点は何でしょうか?

6月30日、北京地下鉄の改札口でデジタル人民元が支払いに使えるようになる。「孔坊兄弟」は再び変身し...

ビデオ映像から間取り図を推測する新たなAI研究は目を見張るものがある

フロアプランは、空間を視覚化したり、ルートを計画したり、建物のデザインを伝えたりするのに役立ちます。...

数行のコードで強化学習を実装する

強化学習は過去 1 年間で大きな進歩を遂げ、最先端のテクノロジが 2 か月ごとにリリースされています...

...

...

物理学者が67年前に予測した「悪魔」がネイチャー誌に登場:「偽の」高温超伝導体で偶然発見

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

人工知能が悪性脳腫瘍の発症予測にどのように役立つか

[51CTO.com クイック翻訳] 人工知能の発展に伴い、人々の日常生活に密接に関係する多くの分野...

...

このAI職種の平均学歴は中学卒程度であり、最も絶望的な職業として認識されている

[[437446]] 2020年2月、「人工知能トレーナー」は正式に新しい職業となり、国家職業分類カ...

AI導入における7つの最大の障壁とその解決方法

COVID-19 により、企業はデジタル変革の取り組みを数か月、場合によっては数年も加速させるようプ...

...

機械学習の理解と考察

[[199326]]近年、人工知能の力強い台頭、特に昨年のAlphaGoと韓国のチェスプレイヤー、イ...