人間と機械の統合はなぜ難しいのでしょうか?

人間と機械の統合はなぜ難しいのでしょうか?

時間と空間を結びつけるのは速度であり、エネルギーと質量を結びつけるのも速度です。事実と価値を結びつけるものは何でしょうか? 人と機械を結びつけるものは何でしょうか? それは常に改訂される推論ルールでしょうか? それとも常に改訂されるルール推論でしょうか?

DeepMind の Alpha Go、Zero、Fold の Alpha は、ギリシャ語アルファベットの最初の文字で、最初、始まり、頭文字を意味します。

計算が事実や価値観、状況や認識を伝える手段であるならば、計算は主観と客観、感覚と概念を結びつけるワームホールです。

[[356171]]

人工知能における「人間」は「人間」ではない

一般的に言えば、特定のタスク状況では、物事の価値は事実上の(重要性の)量を中心に頻繁に変化しますが、それは決定論的な変化ではなく、不確実で集約的な変化であり、時には大きく、時には小さく、分散と集約は柔軟です。これは、私たちの日常生活における価値観に似ており、常に同化し、適応し、バランスを修正しています。ファインマンはこう言いました。「小さなスケールの物事は、大きなスケールの物事とはまったく同じようには動作しません。」逆も同様です。時には、変化する状況における事物の実際の量や価値は直線的に変化するのではなく、映画のショットのように、日常生活の中間的な時間や空間を必要とせずに、それ自体の論理的な手がかりに従って変化します。無から有を生み出すことも、有から無を生み出すこともできます。特定の状況下では、物事の事実性や価値が、どれだけ離れていても、瞬時に認識され、自動的なパターンマッチング効果が形成されます。

人工知能における「人」は、実際の「人」ではありません。自律性は知性を意味するものではなく、言い換えれば、自律性は知性の必要条件ではあるが十分条件ではない。価値観を持った自律的な主体だけが知的な存在であると言える。したがって、事実の自律性は単なる自動化であり、価値の自律性はインテリジェンスであり、洞察の自律性はさらにインテリジェンスです。現実の人間は主観性や存在論を持たないことが多く、システムや制度とともに変化します。

人間と機械は相互に作用し、機械は線形性を処理し、人間は非線形性を処理します。

良い作品は、多くの人々の創造の結果です。例えば、「Ordinary World」は、陸耀が書き、李野墨が語り、俳優が演じ、無数の読者/聴衆が考え、さまざまなメディアによって広められました...; 優れたインテリジェント製品やシステムも、多くの人々の創造の結果です。例えば、「AlphaGo」や「AlphaZero」は、Deep Mind によって開発され、以前のチェスマニュアルによって訓練され、大衆によって想像され、さまざまなメディアによって広められました...

ある人はこう言いました。「感性とは複雑なパターンのあいまいな計算であり、最もエネルギーを節約するものと最も効率的なものの間のバランスである。」実はそうではありません。感性知能は計算ではなく、計算が追加されたコンピューティングメカニズムです。これは複雑なパターンのファジー計算であり、最も省エネで効率的なバランスです。コンピュータのメカニズムは、何が起こったかの正確なプロセスを必ずしも理解していなくても、満足のいく答えを出すことができます。ただし、これらのプロセスは不透明であり、何ができて何ができないかを明確に証明することは困難です。感覚知能の場合、ルールが私たちが受け入れたくない推論を生み出す場合はルールを修正できます。また、私たちが修正したくないルールに違反する推論は拒否できます。事実を価値に変換することは、ルールと受け入れられた推論を調整する繊細なプロセスであり、最終的に決定される価値は、本人と私自身の間で達した合意にあります。おそらく、人工知能の基本法則は、人間の知能の法則を説明するのに実際には使えないのでしょう。

時間と空間を結びつけるのは速度であり、エネルギーと質量を結びつけるのも速度です。では、事実と価値を結びつけるものは何でしょうか。つまり、何かをする価値があるかどうかを測るためにどのような指標が使われるかということです。おそらくこれは、現実と仮想、現実とフィクション、構造と機能などの並行世界を結びつける問題なのでしょう。

人間と機械の統合における矛盾は、人間は発散し、機械は収束し、人間は弁証法的で、機械は規則的であり、一方が拡散し、他方が収束し、一方が動いており、他方が静かであることにあります。さらに、私たちが直面しているのは、多くの場合、1つの問題だけではなく、互いに絡み合ったさまざまな問題のグループです。したがって、純粋な数学的論理方法を使用して解決の目標を達成することは困難であるため、形式論理、弁証法的論理、さらには非論理的な手段も同時に使用する必要があります。

機械学習や人工知能の不確実性と説明不可能性は、帰納法、演繹法、類推法などの発明された推論メカニズムが、確かに一定の不完全性、不安定性、矛盾につながる可能性があることを人々が発見したことに主に起因しており、コンピューティングの規模が拡大し続けるにつれて、これらの不確実性と説明不可能性はさらに大きくなるでしょう。人間の反事実的推論と反価値的推論は、仮想的な仮定の観点から、これらの形式化された自然な欠陥を事前に防いだり警告したりすることができます。人間と機械の融合を認知的主題として扱うことは複雑性の問題を解決するのに効果的ですが、異なるタスクの下でそれらをどのように統合するかという問題を解決する必要があります。さらに、1人と1台の機械の単独融合と、複数人と複数台の機械のグループ融合は、基本的なメカニズムの面で大きく異なります。諺にあるように、3人の靴屋は1人の諸葛亮よりも優れています。

命題論理の重要な点は、それが二元的であるということです。各文(命題とも呼ばれる)は真か偽かであると想定されます。中間の答えはなく、不確実性と確率は受け入れられません。許可されるのは、真と偽の 2 つの「真理値」だけです。熱力学は論理よりも脳の機能に近いです。ロジックは統計に、単一ユニットはコレクションに、決定論的純粋性は確率的ノイズに置き換えられます。

<<:  YouTube でフォローすべき 5 人のデータ サイエンティストと機械学習エンジニア

>>:  自動運転車はどれくらい遠いのでしょうか?

ブログ    

推薦する

顧客サービスの革命: 現代のビジネスにおける広報ロボットの役割

人工知能 (AI) の登場により、企業の運営方法は劇的に変化し、PR ボットが顧客サービスの革命にお...

Microsoft と Meta が提携し、Bing 検索を Meta AI チャットボットに統合

9月28日早朝、Meta Connect 2023において、MetaはMeta AIという新しいチャ...

予想外だが妥当: ガートナーの 2020 年データ サイエンスおよび機械学習プラットフォームのマジック クアドラントの解釈

最近、ガートナーはデータ サイエンスおよび機械学習 (DSML) プラットフォームに関するマジック ...

マイクロソフトがAI開発に関する無料電子書籍をリリース、インテリジェントなチャットボットの構築方法を教える

最近、Microsoft は、Microsoft AI プラットフォームを使用してインテリジェントな...

目録:2021年1月の人工知能分野における資金調達活動のリスト

過去2年間、人々の注目は5Gにますます集まっているものの、人工知能の発展と人気は少しも衰えていません...

クラウド コンピューティングに必要な 5 つの機械学習スキル

機械学習と人工知能は、IT サービス分野に浸透し続け、ソフトウェア エンジニアが開発したアプリケーシ...

この敵対的アルゴリズムは顔認識アルゴリズムを失敗させ、WeChatやWeiboの写真圧縮にも抵抗できる。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

負荷分散アルゴリズムのQ&A集

前に学んだように、負荷分散アルゴリズムがこの技術の核心です。アルゴリズムの仕様がなければ、この技術は...

...

GitHub スター 6000 以上! Pythonで機械学習のバイブルPRMLを実践

ビショップの PRML は機械学習のバイブルと言っても過言ではありません。この本では、パターン認識と...

業界丨2020年のインテリジェントウェーブを理解するには、BaiduとGoogleのAIの足跡から始める

2020年が過ぎました。順調で平和な生活を送ったか、非常に困難な生活を送ったかにかかわらず、私たちは...

年末大特集!2020年に最も注目されたAI論文をまとめて紹介

2020年、新型コロナウイルスのせいで世界中の人々が恐怖におののいていることでしょう…しかし、これは...

自撮り写真でAIがあなたの顔を認識できないようにする方法

現在、顔認識システムがプライベートな写真で訓練されるのを防ぐツールがますます増えている。個人の写真を...

YOLO-NAS: 最も効率的なターゲット検出アルゴリズムの1つ

YOLO-NAS 物体検出導入YOLO (You Only Look Once) は、ディープ ニュ...