YouTube でフォローすべき 5 人のデータ サイエンティストと機械学習エンジニア

YouTube でフォローすべき 5 人のデータ サイエンティストと機械学習エンジニア

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)から転載したものです。

YouTube で猫の動画を延々と見るのはやめましょう。今こそ YouTube を使って脳を「鍛える」ときです。データ サイエンスのキャリアを効果的に計画する方法を理解したり、損失が収束するのを待つ間に人間の思考と意識の起源に関する直感を高める方法を学ぶのに役立つ、次の 5 人の YouTuber を強くお勧めします。

[[356174]]

1. レックス・フリードマン

Lex Friedman の YouTube チャンネルは、おそらくこれまでの機械学習実践者によるチャンネルの中で最も洞察に富んだチャンネルです。このチャンネルのビデオコンテンツは、Lex Friedman 自身と、コンピューターコンピューティング、機械学習、ディープラーニング、人工知能などの分野の先駆者やトップ研究者とのシンプルな会話です。

このチャンネルを推奨する主な理由は、Lex Friedman が機械学習とディープラーニングの分野の先駆者たちとコミュニケーションをとってきたことです。ディープラーニングの実践者のほとんどは、次に挙げるディープラーニングの先駆者の一部について多かれ少なかれ知っていることでしょう。

  • イアン・グッドフェロー(生成的敵対ネットワークの発明者)、
  • イリヤ・サストケファー(AlexNet の共同発明者)
  • ヤン・リクン(ディープラーニングのパイオニア)
  • ジョシュア・ベンジオ(ディープラーニングの先駆者)

Lex のチャンネルにあるディープラーニング関連の動画に加えて、私が気に入っているのは Yosah Bach との対談動画で、とても興味深いです。ヨシャは、意識、人間の心、そして宇宙を取り巻く質問に素早く巧みに答えることができます。このチャンネルの視聴回数が約 4,500 万回に上る理由をぜひご確認ください。

2. ケン・ジェイ

彼は最も興味深いデータサイエンス YouTuber の 1 人であり、データサイエンス分野で 5 年間の実務経験を持っています。

おそらくほとんどのデータ サイエンティストは Ken Jay のことをすでにご存知でしょう。彼の履歴書やポートフォリオで彼のビデオの 1 つをご覧になったことがあるかもしれませんし、「Data Science Projects from Scratch」のビデオ シリーズを視聴したことがあるかもしれません。私は、Ken Jay のビデオを購読しています。彼がデータ サイエンティストや機械学習の実践者にインタビューしているからです。これらのインタビューでは、データ サイエンスおよび関連分野におけるゲストの学習と経験についての洞察が得られます。

私はこのチャンネルのインタビューゲスト数名から、人工知能分野でのキャリアをどのように計画するかについて豊富な情報を得ました。データ サイエンティストであれば、このチャンネルを購読すべき理由は次のとおりです。

  • テクノロジー大手で働くデータ サイエンティストへの有益なビデオ インタビュー。
  • データ サイエンス コミュニティではよく知られた名前であり、Kaggle Grandmaster に 4 回選ばれた Abhishek Thakur 氏との洞察に満ちたインタビューです。
  • データ サイエンスの実践者がカバーするコンテンツは多数あります。 Ken は、データ サイエンスを効果的に学ぶ方法、インポスター症候群への対処法、採用されるために取り組むべきプロジェクトなどに関するビデオを公開しています。
  • 機械学習モデルのトレーニングが完了するまで待つ間に、5 分間の短いビデオを視聴できます。

3. ヤニック・キルヒャー

Yannick Kilcher のチャンネルは、最新の機械学習技術に関する研究論文を非常にうまく解釈しています。ここでは、研究論文を説明する際にヤニック氏が直感的かつ率直に行っているアプローチを紹介するエピソードをいくつか紹介します。

  • OpenAIのGPT-3研究論文の解釈
  • 変圧器ネットワークを紹介する論文の解釈
  • 機械学習分野の古典的な研究論文に関するビデオシリーズ

機械学習の実践者全員が、研究論文を読んで理解するために必要な開発スキルを身に付けられる修士号または博士号の経験を持っているわけではありません。多くのデータ サイエンティストや機械学習エンジニアは独学であり、研究論文を効果的に分析するために必要な学問的規律を持っていません。

そのため、Yannick のチャンネルは、従来の機械学習モデルと最新の機械学習モデルおよび手法に関する詳細な技術情報を得るためにデータ サイエンティストや機械学習の実践者にお勧めする、私のお気に入りの YouTube チャンネル トップ 5 の 1 つです。

4. ジョーダン・ハロルド

ジョーダン・ハロルドは、MIT とハーバード大学を卒業し、人工知能に関連するトピックのビデオ コンテンツを制作しています。ジョーダンのチャンネルでは、AI ベースの技術を現実世界の問題の解決に直接適用する方法を説明するビデオが多数見つかります。

ジョーダンのチャンネルの動画のほとんどは短くて要点を押さえたもので、10 分未満で終わります。ただし、ほとんどの機械学習実践者が恩恵を受けることができる、関連性のある最新の情報が多数含まれています。

ジョーダン氏の動画では、AI を活用してコロナウイルスを予測する方法や、AI ソリューション内の人種的偏見など、技術的な観点から関心の高いトピックを取り上げています。

[[356175]]

画像ソース: unsplash

5. 3青1茶

このチャンネルの作成者はグラント・サンダーソンで、彼のビデオコンテンツは素晴らしいです。このチャンネルの裏側にある人物像や個性に興味がある方は、Lex Friedman による Grant のインタビュー 2 本をご覧ください。 3Blue1Brown をよく知っている人なら、彼が大学の講師が何時間もかけて教えるコースを、わずか 15 ~ 20 分のビデオで教えていることに同意するでしょう。

このチャンネルでは、機械学習とニューラルネットワークの基礎を教えてもらい、数学も簡単に理解できました。機械学習では、線形代数、微積分、偏微分などのトピックを理解することが重要です。ニューラル ネットワークを研究する際には、ニューラル ネットワークの基本的な構成要素を理解することが重要です。バックプロパゲーション、勾配降下法、ニューラル ネットワーク全般などの概念を理解することも重要です。

YouTube にはデータサイエンス/機械学習の YouTuber がたくさんいるので、独自の学習視聴リストを計画することができます。

<<:  フロントエンド上級編: よく使われるいくつかの JS 検索アルゴリズムの概要とパフォーマンス比較

>>:  人間と機械の統合はなぜ難しいのでしょうか?

ブログ    
ブログ    

推薦する

それは大したことだ! Google によれば、人類は 2029 年に不死を達成するそうです。病気も老化も痛みも完全に消え去ります! ?

この世で最も公平なものは、誕生、老い、病気、そして死だと思います。人生においてどれほど偉大な業績を成...

...

新たな市場トレンドをリードする百度Apollo Zhituがグローバルインテリジェント運転マップをリリース

自動車の知能化の時代が到来しました。 12月8日、広州で開催された第2回百度アポロエコシステムカンフ...

...

Googleが謝罪:Vision AIが人種差別的な結果を生成

新型コロナウイルスと闘っている多くの国々は、駅や空港で国民に体温検査を受けるよう命じている。この状況...

人工知能は将来言語をどのように変えるのでしょうか?

人工知能 (AI) とは、人間の知的思考や行動の方法や技術をシミュレートすることで、コンピュータ シ...

Appleとオレゴン州立大学がAutoFocusFormerを提案: 従来のグリッドを廃止し、適応型ダウンサンプリング画像セグメンテーションを使用

従来の RGB 画像はラスター形式で保存され、ピクセルは画像全体に均等に分散されます。ただし、この均...

...

口コミの逆転、Pika 1.0の試用効果は多くの人々を納得させ、「最高のビデオジェネレーター」と呼んだ

先月末、Pika 1.0と呼ばれる動画生成AIモデルがソーシャルメディア上で話題になった。3Dアニメ...

人工知能をゼロから学ぶのは難しくない

「人工知能」という用語は、1956年にダートマス協会で初めて提案されました。それ以来、研究者は多くの...

...

Java プログラミング スキル - データ構造とアルゴリズム「バイナリ検索」

[[395207]]必要順序付けられた配列 {1,8,10,89,1000,1234} に対してバ...

国際研究機関:アリババの音声AIが中国でトップに

7月14日、国際的に権威のある調査機関IDC(International Data Corporat...

...