1時間から3.5分まで、Metaの新しいアルゴリズムは携帯電話で3D顔データを収集できる

1時間から3.5分まで、Metaの新しいアルゴリズムは携帯電話で3D顔データを収集できる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

人間の顔の 3D モデリングを完了するには、いくつのステップが必要ですか?

データ収集段階での答えは、「携帯電話 1 台 + 3.5 分」でした。

そうです、わずか 3.5 分間のデータで、忠実度が高く運転可能な、リアルな 3D 顔ポートレートを生成するのに十分です。

この研究は、ザッカーバーグ氏のメタバース プロジェクトの中核部門である Meta Reality Labs によるものです。この論文はSIGGRAPH 2022に採択されました。

著者らは、このアプローチは VR アプリケーションに適していると述べています。

つまり、VRの世界では、将来的には漫画のような顔で登場する必要がなくなるかもしれないのです。

代わりに、太った友達の本当の姿に簡単に会うことができます。

方法の原理

この結果を達成するための方法のフレームワークを下の図に示します。

具体的には、3つの部分に分かれています。

まず、大規模なマルチビュー顔データセットを使用してスーパーネットワークをトレーニングします。このスーパーネットワークは、ニューラルネットワークデコーダーを通じて個人のアバターパラメータを生成できます。

データセット内の顔は、マルチビューキャプチャシステムによって収集され、さまざまな年齢、性別、人種の 255 人の参加者の顔画像データが含まれています。

△左が撮影装置、右が撮影した顔

この巨大な3D顔を撮影する装置は、2019年にMeta社によって開発された。171台の高解像度カメラを搭載し、1秒あたり180GBのデータを記録できる。収集時間は約1時間です。

このハイパーネットワークでは、デコーダーの基本的な構成要素は、バイアス マップを備えた畳み込みアップサンプリング レイヤーであることに留意してください。

これらのバイアス マップは、レイ トレーシングを介してアバターをレンダリングするためのボリューム セルを生成するために使用されます。

さらに、デコーダー アーキテクチャは視線を他の顔の動きと区別できるため、VR アプリケーションでは視線追跡システムをより直接的に活用できます。

第二に、軽量な表情キャプチャです

この研究では、顔を撮影するために深度カメラを備えたスマートフォンのみが必要でした。

実験では、研究者らはiPhone 12を使用した。

収集プロセスは次のようになります。

収集されたデータは次のように処理されます。

  • 顔画像の各フレームの幾何学的形状とテクスチャを取得します。
  • 入力 RGB 画像に対して顔のランドマーク検出とポートレートのセグメンテーションを実行します。
  • 検出された顔のランドマーク、セグメンテーションのアウトライン、深度マップに合わせてテンプレート メッシュをフィットおよび変形します。
  • 各フレームのテクスチャはアンパックされ、集約されて完全な顔のテクスチャが得られます。

モデルをさらに改善する過程で、65 個の特定の表現を収集する必要があります。

最後に、この方法で出力される 3D 顔アバターは、ユーザーの外見に高度に一致するだけでなく、グローバル表現空間を通じてさらに駆動および制御することもできます。

研究者らは、採取プロセス全体には約3.5分かかると述べた。

ただし、モデリング プロセスはリアルタイムではなく、データ処理には数時間かかることに注意してください。

実験結果

ここまで述べてきましたが、どれくらい効果があるのか​​実験結果を見てみましょう。

Pinscreenの「1枚の写真から3Dデジタルアバターを構築する」方法(CVPR 2021)と比較すると、この方法はよりリアルな顔モデルを生成できます。

ハイデルベルク大学、ミュンヘン工科大学、マックス・プランク研究所などの研究機関による論文「Neural Head Avatars from Monocular RGB Videos」で提案された方法と比較すると、この方法はより忠実度の高い結果を生成できます。

しかし、著者はこの方法には、長い髪や眼鏡をうまく保持できないこと、アーティファクトが発生しやすいことなどの限界もあると指摘しています。さらに、この方法では照明条件に関しても一定の要件があります。

<<:  時代遅れのリソグラフィー機械は中国に販売できません!米国がオランダのASMLに不当な圧力をかけ、国産チップが再び抑制される

>>:  人工知能技術が英語学習にどのように役立つかについての簡単な議論

ブログ    
ブログ    

推薦する

スマートホームとは何ですか?そしてそれは必要ですか?

スマートホームのコンセプトを最も簡単に説明すると、それは家の自然な進化であるということです。スマート...

...

サイバーセキュリティにおける AI と ML のユースケース

サイバー攻撃の性質と標的が多様化するにつれて、サイバーセキュリティの専門家が脆弱性に対処する方法を決...

AIネットワークワームが暴露:増殖を続け、スパムを送信し、データを盗むことが可能

3月3日、国際的なサイバーセキュリティチームが、生成型人工知能サービス間で独立して拡散し、データを盗...

AI はフロントエンドコードを生成できますか?

この号で共有されているのは、AIGC の用途の 1 つは、フロントエンド コードの作成または生成を支...

機械学習でサプライチェーンを改善する10の方法

現在、企業は機械学習を使用することで、予測エラー率、需要計画の生産性、コスト削減、納期厳守において ...

Facebook、AIが著作権侵害を正確に識別できるようにソースデータ拡張ライブラリを公開: 100以上の拡張方法が提供される

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

生成 AI、その開発は持続可能か?

シャム・ナンダン・ウパディヤイノアが編集制作:51CTO テクノロジースタック(WeChat ID:...

仮想現実プログラムを使用してテストされた人工視覚技術は、視覚障害者の自立を支援する

科学技術が発展するにつれ、人類への科学技術の貢献が徐々に明らかになってきています。現在、世界中の科学...

FPSからRTSまで、ゲーム人工知能におけるディープラーニングアルゴリズムの概要記事

この論文では、ビデオゲームをプレイするためのディープラーニングアルゴリズムをレビューし、さまざまな種...

2022 年に予測されるロボット技術のトレンド トップ 10

COVID-19パンデミックは、物流やスーパーマーケットなどの分野に問題と機会の両方をもたらしまし...

...

CCTV:AI修復により、生産ラインから出荷された国産車の最初のバッチを再現

IT Homeは7月4日、解放CA10トラックが1956年7月に生産ラインから出荷されたと報じた。こ...

AI戦略について尋ねるべき10の質問

近年、AI テクノロジーに投資している企業の大多数は、一般的に、AI アプリケーションを業務改善やコ...