ビッグデータアルゴリズムのジレンマ

ビッグデータアルゴリズムのジレンマ

2013年、米国で窃盗罪で有罪判決を受けた男性がウィスコンシン州の裁判所に訴訟を起こしたという物議を醸す事件があった。その理由は、彼が懲役8年の判決を受けたのは、彼の犯した罪や裁判官の判決のためではなく、AI(人工知能)が彼が社会にとって「非常に危険」であると判断したためである。ビッグデータの時代において、私たちが最も懸念しているのは、データのセキュリティとプライバシーです。しかし、データとアルゴリズムがもたらす問題は、セキュリティやプライバシーよりもはるかに重要かもしれません。

ビッグデータはアルゴリズムを極めて強力にする

機械学習とディープ ニューラル ネットワークは、アルゴリズム設計における人間の限界を克服します。データがあり、データ内に統計的な規則性がある限り、アルゴリズムはこれらの規則性を見つけることができます。近年の人工知能技術の人気は、主に機械学習やディープニューラルネットワークの技術革新とビッグデータ技術の成熟によるものです。これらの技術革新により、以前は機械では解決不可能だと考えられていた多くの問題が解決可能になりました。かつて、技術者が情報システムを開発する際、ドメイン知識を頭の中でアルゴリズムやプログラムに変換する必要がありました。これらの技術革新により、状況は変わり、ドメイン知識への依存が排除されました。機械学習の手法により、大量のデータからアルゴリズムを自動的に抽出できるため、人間が記述する必要がなくなりました。これにより、ミスや漏れが減り、開発コストが削減されるだけでなく、現実の変化によって遅れることなく、データの変更に応じて自動的に更新できるようになります。

アルゴリズムの問​​題

アルゴリズムには価値判断がありません。計算結果に価値判断を加えるのは最終的には人間です。しかし、人々がアルゴリズムによって提供された結果を社会的な関係に対処するために使用すると、その結果は関係者全員にとって意味のあるものになります。

アルゴリズムは少数の人々に過大な権力を与えてしまいます。技術革新とビッグデータによりアルゴリズムの開発は容易になりましたが、アルゴリズムを開発して活用するために十分なデータとコンピューティング リソースを入手することは依然として非常に困難な作業です。アルゴリズムを習得し活用する能力は依然として少数の人々に限られており、この少数の人々が社会生活において他の人々よりも大きな優位性を持っています。社会的公平性のために、財産上の優位性を持つ人々にはより高い税金を課し、権力を持つ人々にはさまざまな抑制と均衡を課していますが、アルゴリズム上の優位性を持つ人々を制限する方法については、まだ実現可能なアイデアがありません。

アルゴリズムに関する迷信。技術革新により、アルゴリズムを人間が書く必要がなくなりました。これにより、人間がアルゴリズムを開発する負担は軽減されますが、人間がアルゴリズムを理解することはより困難になります。ディープラーニングによって生み出されるアルゴリズムのほとんどは人間には理解できないものですが、ほとんどの場合、そのアルゴリズムは効果的であるため、理解できなくても人々は喜んでそれを使用します。これによりリスクが生じます。アルゴリズムの境界と失敗条件を誰も知らないため、アルゴリズムがいつ失敗するかを知ることができません。理解不足のため、ユーザーはこのリスクを無視する傾向があり、アルゴリズムに関する迷信が形成されます。ウィスコンシン州の訴訟制度もその例です。

対応する社会的制約メカニズムを維持するのは困難です。新しい技術は、その効果があれば、すぐに社会生活に広く普及するでしょう。しかし、新しい技術は人々のライフスタイルを大きく変えることが多く、その変化に対応した社会的制約の仕組みは、新しい技術の社会的影響が次第に明らかになってから、徐々に確立されていくことになります。社会規範は常に社会の現実に遅れをとっています。急速に発展する今日のテクノロジーの世界では、この遅れによって引き起こされる問題が特に顕著です。今日の人工知能が人々の日常生活に与える影響は、ちょうど100年前の自動車の普及が与えた影響に似ています。アメリカの一般家庭が自動車を所有するようになってから何年も経ち、道路信号や交通ルール、運転免許試験などの設備や仕組みは、技術の変化のスピードに追いつくために徐々に改善されていきました。

変化の中の秩序を探る。人工知能技術は今も急速に発展しており、社会生活への影響はようやく現れ始めたばかりです。この点において、我々は、技術発展を妨げて本末転倒になることも、技術発展を放置して弱肉強食になることも許されない。技術発展の動向と社会現実の変化に対応し、絶えず模索と調整を行い、利益を促進して不利益を排除し、技術発展が常に社会進歩の原動力となるようにしなければならない。

<<:  膨大なログから未知の異常な動作をオンラインでリアルタイムに検出するにはどうすればよいでしょうか?ハンシのシーケンス異常アルゴリズムを参照

>>:  GNMT - Google のニューラル ネットワーク翻訳システム

ブログ    
ブログ    

推薦する

Fast.ai の 10,000 ワードの記事: AI の安全性と光の終焉

ビッグデータダイジェスト制作最近、AI規制に関する意見は「新たな高み」に達し、AI専門家のグループが...

ワイツマンとNVIDIAは、自然言語を使って写真を編集できるText2LIVEを共同でリリースした。

Photoshop のようなソフトウェアを使用することは、創造的な作業とみなされますか、それとも反...

マイクロソフトは、劣化が著しい古い写真を復元できる新しいアルゴリズムを開発した。

海外メディアの報道によると、マイクロソフト研究チームのZiyu Wan氏、Zhang Bo氏らは、デ...

AIのリスクと安全性をどのように管理するのか?

AI モデルのトレーニングには、大規模で機密性の高いデータセットが使用されることが多く、プライバシ...

緑の希望を守るため、人工知能が森林火災防止ネットワークを構築

ご存知のとおり、森林火災は世界の8大自然災害の一つであり、森林の安全に対する脅威です。平均すると、世...

2021 年に登場予定の 10 のビッグデータ テクノロジー

1. ハドゥープシンプルなプログラミング モデルを備えた Hadoop は、マシンのクラスター間で多...

MiniGPT-4: 高度な大規模言語モデルを使用した AI 視覚言語理解の向上

1. プロジェクトの背景と動機今年初め、OPEN AI の GPT-4 は前例のないマルチモーダル機...

自動運転、ただ約束するだけではもう効果がないのか?

北京市宜荘市内の約60平方キロメートルの制限区域内で、数十台のロボタクシー(無人タクシー)が現在、公...

...

...

速報、劉強東が核爆弾を投げる!宅配便は早く消えます!

本当に信じられません、この時代の変化のスピードは想像を絶します!革新!革新!再びイノベーション!次か...

世界を理解する、最新のレビューは自動運転の新しい時代を開く

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

私はAIロボットの何希2号です。私の話を聞きたいですか?

「インテリジェント ブレイン」センターの場所 - AIXO ビル、地下 21 階、タイムトラベル研...

ドローンは何に使えるのでしょうか?これらの使い方は本当に素晴らしいです!

ドローンは最近ますます人気が高まっています。高解像度カメラ付きの機械を数百ドルで購入することもできま...

休日のAI本リスト:人工知能をしっかり学びたいなら、まずはこの6冊から始めましょう〜

諺にあるように、何千冊もの本を読むことは何千マイルも旅をすることと同じです。休暇中に本を読まないわけ...