ディープラーニングは、データから段階的に優れた高度な洞察を抽出するために複数の処理層を活用する人工ニューラル ネットワークに基づく機械学習の一形式として定義できます。本質的には、これは AI プラットフォームと機械学習のより洗練された応用にすぎません。 ディープラーニング分野の注目のトレンドをいくつかご紹介します。モデル拡張現在、ディープラーニングにおける注目の多くは、現在ではベースモデルと呼ばれている、大規模で比較的一般的なモデルのスケーリングに集中しています。新しいテキストの生成、テキストからの画像の生成、テキストからビデオの生成など、驚くべき機能を実証しています。 AI モデルを拡張するあらゆる技術により、ディープラーニングの機能がさらに強化されます。これは、単純な応答を超えて、データ、好み、潜在的なアクションをさらに深く掘り下げた多面的な回答とアクションを提供するアルゴリズムに反映されています。 規模の限界の拡大しかし、ニューラル ネットワークのスケーリングが今後も成果を上げ続けると誰もが確信しているわけではありません。規模だけに基づくと、知能に関してどこまで到達できるかについては議論があります。 現在のモデルは、ニューラル ネットワークのみを使用して達成できることと、ニューラル ネットワークと他の AI パラダイムを組み合わせる新しい方法が発見されるかどうかという点で、いくつかの点で制限があります。 AIとモデルのトレーニングAI は即時の洞察を得るものではありません。ディープラーニング プラットフォームがデータ セットを分析し、パターンを認識し、現実世界で幅広く適用できる結論を導き出すには時間がかかります。幸いなことに、AI プラットフォームはモデル トレーニングの需要を満たすために急速に進化しています。 AI プラットフォームは急激な革新を遂げており、役に立つまで学習するのに数週間もかかることなく、データ分析と同じ成熟度レベルに急速に到達しています。データセットが大きくなるにつれて、ディープラーニング モデルはますますリソースを消費するようになり、何百万もの予測、検証、再調整を行うために膨大な処理能力が必要になります。グラフィックス プロセッシング ユニットは、このような計算を処理できるように改善されており、AI プラットフォームはモデル トレーニングの需要に対応するために進化しています。企業は、オープンソース プロジェクトと商用テクノロジーを組み合わせることで、AI プラットフォームを強化することもできます。 決定を下す際には、スキル、展開のスピード、サポートされるアルゴリズムの多様性、システムの柔軟性を考慮する必要があります。 コンテナ化されたワークロードディープラーニングのワークロードはますます集中化され、自律的な操作がさらに可能になります。コンテナ テクノロジーにより、組織は MLOps で分離、移植性、無制限のスケーラビリティ、動的な動作を実現できます。その結果、AI インフラストラクチャの管理は、これまでよりも自動化され、より簡単で、ユーザーフレンドリーなものになります。 コンテナ化が重要であり、Kubernetes はクラウドネイティブ MLOps をより成熟したテクノロジーと統合するのに役立ちます。このトレンドに対応するために、企業は Kubernetes を使用して、より柔軟なクラウド環境で AI ワークロードを実行できるようになります。 処方的モデリングは予測的モデリングよりも優れているモデリングは長年にわたって多くの段階を経てきました。最初の試みでは、過去のデータから傾向を予測しようとしました。これにはある程度の価値はありますが、環境、突然のトラフィックの急増、市場動向の変化などの要因は考慮されません。特に、リアルタイム データは、初期の予測モデリングの取り組みでは実質的な役割を果たしていませんでした。 非構造化データの重要性が増すにつれ、企業はそれをマイニングして洞察を得たいと考えています。処理能力が向上するにつれて、リアルタイム分析が急速に重要になってきました。ソーシャル メディアによって生成される膨大なデータにより、リアルタイムの情報処理の需要が高まっています。 これはAI、ディープラーニング、自動化とどう関係するのか多くの業界における現在および過去の AI の実装の多くは、AI が人間に何らかの予想されるイベントを通知し、人間が専門知識を持ってどのようなアクションを取るべきかを知ることに依存しています。将来の出来事を予測し、それに応じて行動できる人工知能に目を向けるプロバイダーが増えています。 これにより、より効率的なディープラーニング ネットワークへの扉が開かれます。多層ニューラル ネットワークにリアルタイム データが供給されるため、AI は増大する作業負荷から人間を軽減するために使用できます。ディープラーニングを使用すると、人間の専門家に決定を委ねるのではなく、履歴、リアルタイム、分析データに基づいて予測的な決定を下すことができます。 |
<<: ある男性が「量子速読」のスタントで59万人のファンを魅了した。彼はストリートビューを0.1秒間見るだけで位置を特定できるのだ。
OpenAI 宮殿ドラマが終わったばかりですが、すぐにまた別の騒動が勃発しました。ロイター通信は、ア...
人類はアフリカでホモ・サピエンスとして誕生して以来、約50万年にわたる進化の過程を経てきました。人類...
古代から現代に至るまで、自然災害は人類に限りない損失をもたらしてきました。都市社会がますます発展する...
[[255980]]ついに待望の登場です! Alibaba は、主要なオープンソース プロジェクトで...
欠損データの処理は簡単な作業ではありません。 方法は、単純な平均補完や観察結果の完全な削除から、MI...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
[[379264]]人工知能(AI)の発展に伴い、機械が人間の労働に取って代わるというニュース報道が...
ビデオ理解の分野では、マルチモーダルモデルは短いビデオの分析において画期的な進歩を遂げ、強力な理解能...
社会の発展に伴い、わが国の工場は徐々に手作業中心から設備中心へと変化し、人類の創造性が十分に反映され...
AI チャットボットは、自然言語処理と機械学習を使用してユーザーとの人間の会話をシミュレートするソフ...
ディープラーニング技術は、自然言語処理 (NLP) の分野に大きな影響を与えます。しかし、初心者の場...
GTA5 は古典的な 3D アドベンチャー ゲームであり、そのスタイルは次のとおりです。写真は現実に...
人工知能(AI)技術はどこまで発展したのでしょうか? [[278665]]将来、AIが社会に本格的に...