2022年のインテリジェント運用保守(AIOps)の開発動向

2022年のインテリジェント運用保守(AIOps)の開発動向

AIOps (IT 運用のための人工知能)、つまりインテリジェントな運用と保守は、人工知能の機能を運用と保守と組み合わせ、機械学習手法を通じて運用と保守の効率を向上させます。

従来の自動化された運用・保守システムでは、反復的な運用・保守作業の人件費と効率の問題が効果的に解決されてきました。しかし、複雑なシナリオにおける障害処理、変更管理、容量管理、サービス リソースのプロセスでは、意思決定プロセスを制御するために依然として人手が必要であり、これが運用と保守の効率のさらなる向上を妨げています。 AI 手法を導入することで、人間の代わりに機械が意思決定を行えるようになり、完全な自動化が真に可能になります。

今日の企業は、DevOps ツールを AIOps 戦略に統合することで、より高速なデータ収集、真の可観測性、詳細なデータ分析を実現できます。

DevOps (Development と Operations を組み合わせた造語) は、「ソフトウェア開発者 (Dev)」と「IT 運用技術者 (Ops)」間のコミュニケーションと協力を重視する文化、運動、または実践です。 「ソフトウェア配信」と「アーキテクチャ変更」のプロセスを自動化することで、ソフトウェアの構築、テスト、リリースをより迅速かつ頻繁に、そしてより信頼性の高いものにすることができます。

AIOps がなぜ人気があるのか​​? 理由は簡単です。消費者の生活を楽にするテクノロジーは、企業にとっては悪夢となる可能性があります。ここで、機械が真価を発揮します。 AI ツールは、企業がアプリケーションを 24 時間 365 日監視し、リスクを軽減し、パフォーマンスを分析し、さらには人間のチームがカスタマー サービス ボットを考案するのにも役立ちます。

AIOps はこれを可能にします。2022 年の AIOps のトレンドは次のとおりです。

これにはサイバーセキュリティの全般的な拡大が伴います。インシデント対応は、人工知能のディープラーニング機能によって人間を面倒な手作業から解放できる分野です。サイバーセキュリティ チームがどれだけ優秀であっても、一度にあらゆる場所に存在することはできません。 AI は、侵入や潜在的な脅威を早期に特定することを学習し、インシデントが拡大してさらなる被害が発生する前に、サーバーのシャットダウンやストレージ システムへのアクセスのシャットダウンなどの一連のアクションを開始できます。

観測性を向上させて平均修復時間 (MTTR) を短縮する

最初のトレンドでは、システムの一般的な観測可能性によってインシデントのコンテキストが提供され、企業はプロアクティブなメンテナンス アプローチに移行できるようになります。 AI は、あらゆる場所で絶えず火消しを行うのではなく、最も複雑なシステムも包括的に監視することで、企業がインシデントに対応して修復するまでの時間を短縮するのに役立ちます。統合クラウド監視システムによりこれが可能になります。

観測可能性は監視とは異なります。監視では、何かが起こったという兆候は示されますが、次に何をすべきか、どのようにすべきかについての手順は示されません。一方、可観測性によりシステムの盲点が減り、AI は各インシデントから学習できるため、将来のインシデントの検出と修復がより効率的になります。

自動化の強化

より多くの企業がリモートワークを導入し、サイバーセキュリティを強化し、完全な顧客サービスを追求するにつれて、スマートなアルゴリズムによってこれらすべてのタスクを自動化できるようになります。この自動化により、パターン検出、潜在的な脅威のより適切な予測が可能になり、人間のチームによる手動介入を必要とせずにインシデントのコンテキストが提供されます。

これにより、IT 部門はシステムを有能な AI に引き渡しながら、より高度なタスクを処理できるようになります。アルゴリズムは、速度を犠牲にすることなく、さまざまなデータ タイプを処理できるようになりました。この分野でのイノベーションにより、AIOps を活用できる、また活用したいと考える企業の数が増加するでしょう。

AIOpsとDevOpsが融合する

5Gの導入により、スマートな接続環境の基盤が形成されました。企業は DevOps ツールを AIOps 戦略に統合することで、より高速なデータ収集、真の可観測性、詳細なデータ分析を実現できます。前述の自動化プロセスも AI で始まり、AI で終わります。

これは良いニュースです。時代遅れのテクノロジー ツールはビジネスの妨げになる可能性がありますが、AIOps が機能するために必要な要素はすべて整っています。企業は、セキュリティやガバナンスを犠牲にすることなく、業務を統合および簡素化し、創出する価値に再び焦点を当てることができます。

未来はAIOpsの手に

人間は技術の進歩のペースに追いつくことはできませんが、AI のスマートなアプリケーションにより、企業はビッグデータや新しいサイバーセキュリティの要件に対処し、成長するアーキテクチャを簡素化することができます。混沌から秩序を生み出し、接続された効率的な運用の新世代を実現します。

<<:  5秒間のモバイル猫動画でも猫の3Dモデルを再構築できる。Metaは変形した物体をモデリングするための新しいアルゴリズムを提案

>>:  7nmプロセス限界を突破した世界初の3DウェーハレベルパッケージングプロセッサIPUがリリース

ブログ    
ブログ    

推薦する

人間の脳神経の「100万分の1」の3D接続マップを描きます!膨大な量のデータは14億個の1Tハードドライブを埋め尽くす

少し前に、Google とハーバード大学が共同で、人間の脳の神経の 3D 接続マップを公開しました。...

人工知能チュートリアル(II):人工知能の歴史とマトリックスの再考

このシリーズの最初の記事では、人工知能、機械学習、ディープラーニング、データサイエンスなどの分野間の...

顔認識の応用シナリオは拡大し続けています。顔スキャンは便利で安全である必要があります。

[[341456]]顔スキャンでロック解除、顔スキャンで支払い、顔スキャンでキャンパスに入る......

ニューラルネットワークの不気味な評判

[[185985]]ニューラル ネットワークが無限のトリックを実行するのを見ると、最近ではディープラ...

DeepSpeed ZeRO++: ネットワーク通信を4倍削減し、大規模モデルやChatGPTのようなモデルのトレーニング効率を大幅に向上

大規模な AI モデルがデジタルの世界を変えています。大規模言語モデル (LLM) に基づく Tur...

大学における人工知能への熱意を「クール」に振り返る

大学は関連専攻を開設する際に、教授委員会と学術委員会を組織し、国の人材政策、業界の人材需要、国内外の...

新しい報告書が確認:慎重に扱わなければ、人工知能は現実版「ブラックミラー」になる

新しい報告によると、私たちは人工知能革命の瀬戸際に立っている。この革命において、私たちが作り出すテク...

...

T1000が実現:我が国は液体金属駆動ロボットを開発中

[[247070]]液体ロボットといえば、誰もが真っ先に思い浮かべるのは映画「ターミネーター」のT1...

Baidu Brainの生体検知+合成画像識別、顔の「写真活性化」ブラックマーケット攻撃を1秒で捉える

現在、顔認識技術の成熟度が増すにつれ、特にDeepFakeやFaceSwapなどの顔編集・生成技術の...

...

...

賈陽青氏がフェイスブックを辞任し、アリババ・シリコンバレー研究所の副社長に就任したことが明らかになった。

[[258639]] 3月2日の夜、知书でAI人事異動に関する大きなニュースが報じられた。Caff...

2016年の音声認識の発展を技術的な観点から振り返る

ディープラーニングと人工ニューラルネットワークの発展により、音声認識は 2016 年に一連のブレーク...

各国の人工知能戦略の解釈

現在、人工知能の開発は引き続き盛んに行われており、新世代の科学技術革命の先駆者となりつつあります。米...