2022 年のビジネス インテリジェンスの 7 つのトレンド

2022 年のビジネス インテリジェンスの 7 つのトレンド

ビジネス インテリジェンスは AI に置き換えられることはありません。BI は今でも存在し、役立っています。使いやすくなり、より多くの従業員に拡張され、クラウドに移行し、より広範な ERP および CRM ソフトウェア スイートに組み込まれ、現在では AI と機械学習も組み込まれています。

IDCが提供した2020年の市場シェアデータによると、世界のビジネスインテリジェンスおよび分析市場は総額192億米ドルとなり、流行に関連した経済混乱にもかかわらず5.2%の健全な成長を遂げました。企業がデジタル変革に注力し、よりスマートな方法でデータを活用してビジネスを推進するにつれて、BI の成長が加速すると予想されます。

BARCリサーチセンターの創設者兼CEOであるカーステン・バンゲ氏は、COVID-19パンデミック以前は、BIは投資に見合わないレガシーテクノロジーと見なされていたと述べています。状況は劇的に変化しており、新たな調査結果によると、企業はサプライ チェーン、急速に変化する消費者行動、自社のビジネス プロセスについてより深い洞察を得る必要性を認識し、再び BI に注目し始めています。

2022 年以降のビジネス インテリジェンスの主要なトレンドをいくつか紹介します。

人工知能と機械学習はさらなる可能性をもたらす

人工知能における最も重要な開発動向は、人工知能と機械学習の統合です。 「拡張分析の新時代」が始まっており、次世代の BI ソフトウェアを大衆に提供するために必要な AI 分析機能はまだ初期段階にありますが、歴史的な傾向から、この世代の BI ソフトウェアは 10 年以内に主流になると予想されています。

拡張 BI (AI で強化された従来の BI) は、平均的なビジネス ユーザーを市民データ サイエンティストに変える可能性を秘めています。目標は、データ サイエンティスト以外のユーザーが予測、予測分析、異常検出、その他の BI 関連機能を「ワンクリック」で実行できるようにすることです。

機械学習システムはバックグラウンドで実行され、「知らないことが分からない」という問題を解決できます。機械学習システムは、データ内の興味深いパターンを識別し、他の方法では決して不可能な方法でエンドユーザーに警告することができます。

拡張分析とは、機械学習と人間の能力を組み合わせ、創造的な問題解決と比類のないパターン認識を組み合わせて、両方の長所を最大限に活用する能力を指します。主な目標は、分析と BI をよりアクセスしやすくし、一般ユーザーの参入障壁を下げながら、上級ユーザーの効率と効果を高めることです。

ポストエピデミック時代にクラウドアプリケーションが爆発的に普及する

BI ソフトウェアのクラウド導入は以前からトレンドとなっていましたが、COVID-19 パンデミックにより従業員が在宅勤務を余儀なくされ、IT 部門が重要なビジネス アプリケーションへのリモート アクセスを提供する必要に迫られたことで、クラウド導入は確実に加速しました。

新しい BI 導入の 50% はクラウドで行われており、毎年着実に成長しています。クラウドベースの BI の利点には、リモート ユーザーへのアクセス性、スケーラビリティ、弾力性、展開のスピードなどがあります。企業がバックアップやアプリケーションの実行のために大規模なデータセットをクラウドに移行することに慣れてくると、データウェアハウスやデータ分析もクラウドに移行する可能性が高まります。分析リーダーは、データに分析をもたらすことを好み、その逆は好みません。

自然言語処理がさらに一歩前進

データ サイエンティストでない限り、適切なクエリを作成するのは困難です。解決策は、BI システムに自然言語処理を組み込み、一般の従業員が質問するだけで回答が得られるようにすることです。自然言語処理により、既存の BI トレーニングを受けた従業員が BI ツールをより効果的に使用できるようになるだけでなく、企業が組織全体で BI をより深く広く拡張することも可能になります。

自然言語処理は興味深いトレンドですが、まだ完全に実現されていないと言っても過言ではありません。自然言語を正確なクエリに翻訳するのは非常に困難であり、最初の試みで正しい答えが得られる可能性は低いです。 Google 検索を行ったときと同じように、何百もの回答が得られるかもしれません。自然言語システムには、まだかなりの調整が必要です。

BIはCRMおよびERPプラットフォームに組み込まれています

買収または社内開発を通じて、CRM および ERP ベンダーは BI を自社のプラットフォームに組み込んでいます。利点は、BI が独立した接続されていないプロセスからビジネス プロセス ワークフローの不可欠な部分へと進化することです。組み込み BI は、企業がビジネス プロセスに関連する手順を自動化するのに役立ち、速度とパフォーマンスの向上につながります。

ストーリーテリングを通じて情報を伝える

従来の BI では、システムはカラフルなグラフが満載のレポートやダッシュボードを生成しますが、このプレゼンテーションは見た目は美しいものの、技術に詳しくないユーザーに情報を提示する最善の方法ではない、または最も役立つ方法ではない可能性があります。 「非常に複雑なビジュアル」に対抗するトレンドの1つは、データの大量投入よりもストーリーテリングへの移行だとバンジ氏は言う。

BI ベンダーは、「情報設計」と呼ばれる原則を使用して、生のデータだけでなく次に何をすべきかについてのアドバイスも表示し、ユーザーが特定の問題や状況に適切に対処できるようにプレゼンテーションを合理化しています。このタイプの物語には、魅力的なイメージに合わせてテキストによるナレーションが含まれる可能性が高くなります。

BIは運用中です

従来の BI では、毎週や毎月などの固定スケジュールでレポートが配信されます。しかし、今日の競争の激しいビジネス環境では、意思決定をリアルタイムで行う必要があるため、これではもはや十分ではありません。運用 BI (運用インテリジェンス (OI) とも呼ばれる) を使用すると、消費者の行動やサプライ チェーンの混乱など、さまざまなソースからのデータを収集して分析できます。

BI システムは、特定の機能にさらに多くのリソースを割り当てたり、急速に変化するビジネス状況に対応したりするなど、迅速な意思決定のための推奨事項を提供できます。運用 BI を使用すると、ダッシュボードを定期的に (1 時間ごとなど) 自動的に更新でき、システムはアラートをトリガーして、対処する必要がある問題や活用できる新しい機会があることを運用チームに通知できます。

BIを成功させるには事前の作業が必要

BI ツール自体はかなり成熟していますが、必要な準備が整っていないために BI の導入に苦労している企業が多くあります。技術は存在するが、障害は人とプロセスの側面にある。企業はデータ主導の文化を構築し、従業員をトレーニングする必要があります。

BARC の新しい調査研究によると、回答者に 2021 年の優先事項をランク付けするよう依頼したところ、データ品質管理とデータ検出がトップにランクされました。高度な分析と機械学習は 11 位にランクされていますが、これは企業が AI に興味を持っていないことを意味するものではありません。つまり、企業は、基盤となる高品質でアクセス可能なデータがまだ完全に実装されていない状態で、機械学習のメカニズムを導入するのに苦労していることになります。企業は、高度な方法に焦点を移す前に、基本に立ち返り、データの使用と管理の基礎に重点を置いているようです。

Everson 氏は CIO に対して、「今すぐエンタープライズ グレードのプラットフォームを導入する」ことをアドバイスしています。これは、既存の BI プラットフォームの古いバージョンを更新するか、新しいベンダーと連携することを意味します。現在、分析に使用できるデータは 20 ~ 30% のみで、通常のエンタープライズ データ ウェアハウスに取り込まれています。 BI は、CIO が成功するために必要なすべてのものへの投資です。

<<:  デジタルマーケティングにおけるAI革命

>>:  5Gが企業に与える影響

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

テキスト処理から自動運転まで: 機械学習で最もよく使われる 50 の無料データセット

機械学習分野のオープンデータセットにはどのようなものがあるでしょうか。Gengo は最近、高品質の無...

スタンフォード大学の人工知能レポート: 今からでも遅くはない

スタンフォード大学は3月3日、2021年人工知能指数レポートを発表しました。その中で、AI関連の学習...

2023 年までにデータセンターで注目される AI と ML の 10 大アプリケーション

人工知能 (AI) と機械学習 (ML) は、データセンター分野の重要なテクノロジーとなっています。...

人工知能に関するよくある誤解

ビッグデータ、自動化、ニューラルネットワークが日常語となっている世界では、人工知能とその背後にあるプ...

AI向けに構築されたコンピューターに最適なアクセサリと外部コンポーネント

[[435844]]人工知能用に構築されたコンピュータ システムに最適なアクセサリとコンポーネントは...

大規模モデルは16,000以上の実世界のAPIを習得しており、清華大学などのToolLLMのツール使用能力はChatGPTに劣らない。

ご存知のとおり、オープンソースの大規模言語モデル (LLM) とその派生モデル (LLaMA や V...

コミック版:ディープラーニングって何?

Google はどのようにしてわずか数秒で Web ページ全体をさまざまな言語に翻訳するのか、ある...

...

9月30日付けでマイクロソフトがAIサービス規約を更新:リバースエンジニアリング等に利用不可

マイクロソフトは8月16日、AI利用規約を発表し、9月30日に正式に発効すると発表した。新しい用語は...

劉慈欣は人工知能について語る: 前方にある知能と同じくらい人工知能も存在する。

[[248113]]画像出典: IDG Capital最近開催された2018年の「IDGキャピタル...

AIとMLに対する5つの潜在的な致命的な脅威とその解決方法

[[267669]] [51CTO.com 速訳] 人工知能(AI)と機械学習(ML)は、この時代の...

...

新たなAI詐欺事件が発覚! 「人工知能」は「インテリジェントな人工知能」ほど優れていないのでしょうか?

AIが「コーダー」に取って代わるという現実はまだ実現していないが、その逆を行い、コーダーを使ってA...

Googleが謝罪:Vision AIが人種差別的な結果を生成

新型コロナウイルスと闘っている多くの国々は、駅や空港で国民に体温検査を受けるよう命じている。この状況...

ビッグデータと人工知能 - 機械的思考から統計的思考へ

[[384196]]今日は、ビッグデータ、人工知能、認知問題の解決の関係ロジックについて話す記事を書...