ロボット市場はかつてないほど活況を呈しており、これらの5つのトレンドが今後の方向性となる可能性がある。

ロボット市場はかつてないほど活況を呈しており、これらの5つのトレンドが今後の方向性となる可能性がある。

CCTVの報道によると、中国は世界最大のロボット市場となっている。今年1月から10月まで、中国の産業用ロボットの生産量は29万8000台で、前年比51.9%増加した。

わが国のロボット市場規模は2021年に839億元に達すると予想されており、2016年から2023年までの平均成長率は18.3%で、そのうち産業用ロボットは445.7億元、サービスロボットは302.6億元、特殊ロボットは90.7億元となる見込みである。 2021年には、わが国の産業用ロボット市場規模は445.7億元に達すると予測されています。2023年には、国内市場規模はさらに拡大し、589億元を超えると予想されています。

産業用ロボットの急速な発展に伴い、5つの方向が今後の発展の主な傾向となる可能性があります。

[[439098]]

人工知能(AI)の助けを借りたより賢いロボット

ロボットがより賢くなるにつれて、効率レベルが向上し、ユニットあたりのタスク数が増加します。 AI 機能を備えたロボットの多くは、プロセスやタスクを実行しながら学習し、データを収集して、実行しながらアクションを改善できます。これらのよりスマートなバージョンには「自己修復」機能も備わっている可能性があり、機械が内部の問題を識別し、人間の介入なしに自己修復できるようになります。

AI のこうした向上したレベルは、ロボットの労働力を増強し、人間の従業員と同じように働き、学習し、問題を解決できるようにすることで、将来の産業部門がどのようになるかを垣間見せてくれます。

環境を第一に考える

あらゆる種類の組織が日常業務の環境への影響を優先し始めており、これは採用するテクノロジーの種類に反映されています。

2021 年のロボット工学は、企業がプロセスを改善して利益を増やしながら二酸化炭素排出量を削減することを目指しているため、環境に重点が置かれています。現代のロボットは、より正確で精密な作業を生み出すことができるため、人為的なミスや間違いを修正するために使用する余分な材料を排除し、全体的なリソース使用量を削減できます。

ロボットは再生可能エネルギー機器の生産を支援し、外部組織にエネルギー消費を改善する機会を提供することもできます。

人間と機械のコラボレーションを促進する

自動化によって製造プロセスのさまざまな側面が改善され続ける一方で、人間と機械のコラボレーションは 2022 年も増加し続けるでしょう。

ロボットと人間が共有スペースで作業することで、ロボットが人間の行動にリアルタイムで反応することを学習し、タスクの実行における相乗効果が大きくなります。この安全な共存は、人間が機械に新しい材料を持ち込んだり、プログラムを変更したり、新しいシステムの動作を確認したりする必要がある環境で確認できます。

この組み合わせたアプローチにより、より柔軟な工場プロセスも可能になり、ロボットが単調で反復的な作業を完了し、人間が必要な即興性と変化を提供できるようになります。

より賢いロボットは人間にとってもより安全です。これらのロボットは、人間が近くにいることを感知し、それに応じてルートを調整したり、衝突やその他の安全上の危険を防ぐための行動をとったりすることができます。

ロボット工学における多様性

2021年のロボットには統一感がない。代わりに、目的に最適なさまざまなデザインと素材を採用しています。

エンジニアたちは、現在市場で入手可能な製品の限界を押し広げ、従来よりも小型で軽量、機敏な、より合理化された設計を生み出しています。これらの合理化されたフレームには、人間と機械の相互作用に合わせて簡単にプログラムおよび最適化できる最先端のスマート テクノロジーも搭載されています。ユニットあたりの材料使用量を減らすことで、最終利益が下がり、全体的な生産コストも改善されます。

ロボットが新たな市場に参入

産業界は常にテクノロジーをいち早く導入してきました。しかし、ロボットによってもたらされる生産性の向上により、他の多くの業界でも刺激的な新しいソリューションが採用され続けています。スマートファクトリーは従来の生産ラインに革命をもたらし、一方で食品・飲料、繊維、プラスチック製造ではロボット工学と自動化が標準となりつつあります。

これは、高度なロボットが焼き菓子をトレイから取り出し、ランダムな向きの食品をパッケージに入れることから、繊維の品質管理の一環として正確な色調を監視することまで、開発プロセスのあらゆる領域で見ることができます。クラウドの普及とリモート操作の能力により、直感的なロボット工学の影響で、従来の製造施設はすぐに生産性の中心地になるでしょう。

<<:  ビデオ会議に最適な AI アプリケーション

>>:  分析と AI に関する 6 つの警告すべき間違い

ブログ    
ブログ    

推薦する

Yirendai - Yiren Hive Fintech AI 実践: Hive Robot

1. 金融テクノロジー金融テクノロジー: これは業界ではフィンテックと呼ばれています。 Wikip...

...

...

WeiboにおけるSparkベースの大規模機械学習の応用

[[195122]]周知のとおり、Weibo のビジネスは 2015 年以降急速に成長しています。内...

...

製薬業界を覆すAIは「仕掛け」か「希望」か?

人工知能 (AI) は、過去 10 年ほどの間に SF の世界から現実の世界へと移行し、地球上のほぼ...

...

人工知能によりデータセンターの設計が再考される

AI が企業で大規模に導入されるにつれて、データセンターのワークロードのより大きな割合が AI によ...

ソフトウェアプログラマー試験: 最もシンプルなコード実装による最速のソートおよび検索アルゴリズム

アルゴリズムの中心的な問題はソートと検索です。これら 2 つの分野は最も広く使用され、最も徹底的に研...

今後の技術開発の動向はどうなると思いますか?

モバイル アプリケーション業界は長年にわたって発展しており、当社のシステムの重要な部分となっています...

機械学習技術におけるアンサンブル学習とは何ですか?

[51CTO.com クイック翻訳] アンサンブル学習は強力な機械学習技術の 1 つです。アンサン...

スマート医療診断を理解するためのレポート:AIエンパワーメントと分子診断の自動化

分子診断のミッドストリーム市場は、機器メーカーや試薬メーカーによって占められています。現在の分子診断...

今日のアルゴリズム: 文字列内の隣接する重複をすべて削除する

[[419471]]小文字で構成される文字列 S が与えられた場合、重複削除操作は隣接する 2 つの...

...

...