すべてのオープンソースモデルを超え、クロードとバードを破り、プログラミングタスク専用の大規模モデルが登場

すべてのオープンソースモデルを超え、クロードとバードを破り、プログラミングタスク専用の大規模モデルが登場

最近、大規模言語モデル(LLM)の継続的なリリースにより、LLMランキング競争が熱を帯びてきており、研究者たちは新しいLLM評価システムで自身のモデルのスコアを継続的に更新しようとしています。

中でも、スタンフォード大学が発表した新しい大規模言語モデルランキングであるAlpacaEvalは、非常に人気があります。これは、より高速で信頼性の高いLLMに基づく全自動評価ベンチマークです。 GPT-4、ChatGPTなど、多くの有名なモデルがリストに載っています。

少し前に、マイクロソフトの中国チームがリリースしたWizardLM(微調整された7B LLaMAモデル)が、数多くのモデルの中で4位を獲得しました。それより上位のモデルは、GPT-4、Claude、ChatGPTでした。WizardLMのパフォーマンスは依然として非常に優れていることがわかります。

最近、WizardLM チームは WizardCoder-15B の新しい大型モデルをリリースしました。その理由として、研究では、StarCoder などのコードクラスを生成する大規模言語モデル (Code LLM) が、コード関連のタスクで優れたパフォーマンスを達成したと述べています。しかし、既存のモデルのほとんどは、命令の微調整なしに、大量の生のコードデータで事前トレーニングされているだけです。そこで本研究では、コード領域にEvol-Instruct(難易度の異なる命令を生成する)アプローチを適用することで、コードLLMに洗練された命令の微調整を提供するWizardCoderを提案する。

HumanEval、HumanEval+、MBPP、DS1000 の 4 つのコード生成ベンチマークにおいて、WizardCoder は他のすべてのオープン ソース コード LLM を大幅に上回ります。さらに、WizardCoder は、HumanEval および HumanEval+ において、Anthropic の Claude や Google の Bard などの最大のクローズドソース LLM よりも優れたパフォーマンスを発揮します。

  • 論文アドレス: https://arxiv.org/pdf/2306.08568.pdf
  • コードアドレス: https://github.com/nlpxucan/WizardLM

方法論の面では、この研究はWizardLMが提案したEvol-Instruct法に触発されたと述べています。さらに、この研究では、コード命令をより複雑にして、コード事前トレーニング済み大規模モデルの微調整効果を向上させることも試みました。

コード生成の分野では、統一されたコードプロンプトテンプレートは次のとおりです。

この記事で使用されている 5 つのタイプは次のとおりです。

この研究では、WizardCoder をトレーニングするために以下のプロセスを採用しました。当初、彼らは StarCoder 15B をベースとして使用し、Evol-Instruct によって進化したコード命令に従うトレーニング セットを使用して微調整を行いました。微調整プロンプト形式の概要は次のとおりです。

WizardCoder のパフォーマンスはどうですか?

クローズドソースモデルとの比較。 GPT4、Claude、Bard などのコード生成用の SOTA LLM は、主にクローズド ソースです。ただし、これらのモデル API にアクセスするのは困難です。この研究では、LLM-Humaneval-Benchmarks から HumanEval と HumanEval + のスコアを取得するという代替アプローチを採用しました。下の図 1 に示すように、WizardCoder は Claude-Plus (59.8 vs 53.0) と Bard (59.8 vs 44.5) を上回り、3 位にランクされています。

WizardCoder モデルのサイズはこれらのモデルに比べてはるかに小さいことに注意してください。さらに、WizardCoder は、細かく調整された命令を備えた他のオープン ソース LLM に比べて大きな利点があります。

オープンソース モデルとの比較。表 1 は、HumanEval および MBPP ベンチマークにおける WizardCoder と他のオープン ソース モデルとの包括的な比較を示しています。表 1 の結果は、WizardCoder がすべてのオープン ソース モデルに比べてパフォーマンス面で大きな優位性を持っていることを示しています。

要約すると、図 1 と表 1 の実験結果から、次の結論を導き出すことができます。

  • WizardCoder は、Claude、Bard、PaLM、PaLM-2、LaMDA などの最大のクローズドソース LLM よりもはるかに小さいにもかかわらず、それらよりも優れたパフォーマンスを発揮します。
  • WizardCoder は、StarCoder、CodeGen、CodeGee、CodeT5+ を含むすべてのオープン ソース コード LLM よりも優れています。
  • WizardCoder は、InstructCodeT5+、StarCoder-GPTeacher、Instruct-Codegen-16B など、命令の微調整によりすべてのオープン ソース コード LLM を大幅に上回ります。

次の図は、DS-1000 ベンチマークにおけるさまざまなモデルの結果を示しています。

<<:  CVPR 自動運転チャレンジで優勝したのはどのようなソリューションでしょうか?

>>:  AIコンテンツゼロ!純粋なランダム数学は現実的な3D世界を無限に生成する、プリンストン大学の中国人による研究

ブログ    
ブログ    
ブログ    

推薦する

Windows Update で使用される指数アルゴリズムにより、XP マシンの速度が大幅に低下する

Windows XP ユーザーは、現在の XP が 2001 年にリリースされた XP よりも遅いこ...

...

人工知能は標的の照準を加速し、人間と機械の統合を支援して即時攻撃を可能にします。

米国の国防月報ウェブサイトは2020年9月23日、米陸軍当局者が、8月11日から9月23日まで行われ...

OpenAI: GPT-5が危険すぎる場合、理事会はアルトマンの釈放を阻止する権利がある

OpenAIは新たな発表を行った。取締役会はアルトマン氏の決定を拒否する権限を持つようになった。特に...

USTCのニューラルネットワークとエンドツーエンドのトレーニングフレームワークは、教育環境が学生の能力に与える影響を調査する

[[424271]]中国科学技術大学の研究者らは、教育コンテキスト認識型認知診断フレームワークを提案...

双子: 効率的な視覚的注意モデルの設計を再考する

著者 | 湘湘天志 張波 他Twins は Meituan とアデレード大学が提案した視覚的注意モデ...

すごい...正義のために親族を殺す? Google AI、米国の月面着陸写真は偽物だと判定

1969年、アポロ11号が月面着陸に成功し、アームストロング船長は、今日でも数え切れないほどの人々が...

AI がエッジ コンピューティングと IoT をよりスマートにする方法

[[391125]]エッジで AI を導入すると、ネットワークの遅延と運用コストを削減できるだけでな...

建設技術におけるAIは潜在性があるが、まだ現実にはなっていない

建設業界がテクノロジーの導入において他の業界に遅れをとっているのは周知の事実です。 2018年の米国...

Googleの検索アルゴリズムがユーザーをより深く理解する方法

Googleは現在、コア検索アルゴリズムに変更を加えており、検索結果の最大10分の1のランキングに影...

GenAIは将来のインシデント管理プロセスを形作っています

回答者の大多数 (59.4%) は明確なインシデント管理プロセスを導入しており、自動化のレベルはニー...

Google UFOGen は、非常に高速なサンプリング速度で高品質の画像を生成できます。

過去1年間、Stable Diffusionに代表される一連の文化イメージ拡散モデルは、ビジュアル創...

この国産トランスフォーマーは自動変形、音声制御、プログラミングが可能。外国人は狂ったように気に入っている

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

「ZAO」かっこいいですね!ディープフェイクを使って顔を変える方法

最近、SNS上で「ZAO」と呼ばれるAI顔変換ソフトが話題になっている。人気が出る一方で、多くの疑問...