毎日のアルゴリズム: 回文部分文字列

毎日のアルゴリズム: 回文部分文字列

[[434467]]

文字列が与えられた場合、その文字列に含まれる回文の部分文字列の数を数えることがタスクです。

開始位置または終了位置が異なる部分文字列は、同じ文字で構成されていても、異なる部分文字列と見なされます。

例1:

  1. 入力: "abc"  
  2.  
  3. 出力: 3
  4.  
  5. 説明: 3 つの回文部分文字列: "a" "b" "c"  

例2:

  1. 入力: 「aaa」  
  2.  
  3. 出力: 6
  4.  
  5. 説明: 6 つの回文部分文字列: "a" "a" "a" "aa" "aa" "aaa"  

ヒント:

  • 入力文字列の長さは 1000 を超えません。

解決策1: ブルートフォース

  1. countSubstrings =関数(s) {
  2. カウントを 0 にする
  3. ( i = 0 とします; i < s.length; i++) {
  4. (j = i; j < s.length; j++)の場合{
  5. if (isPalindrome( s.substring (i, j + 1))) {
  6. カウント++
  7. }
  8. }
  9. }
  10. 戻る カウント 
  11. }
  12.  
  13. let isPalindrome =関数(s) {
  14. i = 0、j = s.length - 1 とします。
  15. i < j である間 {
  16. s[i] != s[j] の場合、戻り値 間違い 
  17. 私は++
  18. じ --  
  19. }
  20. 戻る 真実 
  21. }

複雑性分析:

  • 時間計算量: O(n3)
  • 空間計算量: O(1)

解決策2: 動的プログラミング

文字列の最初と最後の文字が同じで、残りの部分文字列も回文である場合、その文字列は回文です。その中で、残りの部分文字列が回文であるかどうかはより小さなサブ問題であり、その結果はより大きな問題の結果に影響を与えます。

サブ問題をどのように記述するのでしょうか?

明らかに、部分文字列は両端の i ポインタと j ポインタによって決定されます。これらは部分問題を記述する変数です。部分文字列 s[i...j] (dp[i][j]) が回文であるかどうかが部分問題です。

計算されたサブ問題の結果は、基本ケースから始めて 2 次元配列に記録し、表に記入するように各サブ問題の解を導出します。

  1. ああ、ああ、ああ
  2. 私は✅
  3. b ✅

注: i<=j、テーブルの半分だけ使用すればよく、垂直にスキャンする

それで:

  1. i === j: dp[i][j] = 
  2. j - i == 1 && s[i] == s[j]: dp[i][j] = 
  3. j - i > 1 && s[i] == s[j] && dp[i + 1][j - 1]: dp[i][j] = 

今すぐ:

  1. s[i] == s[j] && (j - i <= 1 || dp[i + 1][j - 1]): dp[i][j] = 

そうでなければ偽

コード実装:

  1. countSubstrings =関数(s) {
  2. 定数len = s.length
  3. カウントを 0 にする
  4. const dp = 新しい配列(len)
  5.  
  6. (i = 0; i < len; i++)の場合{
  7. dp[i] = 新しい配列(len).fill( false )
  8. }
  9. (j = 0; j < len; j++)の場合{
  10. ( i = 0; i <= j; i++ とします) {
  11. s[i] == s[j] && (j - i <= 1 || dp[i + 1][j - 1]) の場合 {
  12. dp[i][j] = 
  13. カウント++
  14. }それ以外{
  15. dp[i][j] = 
  16. }
  17. }
  18. }
  19. 戻る カウント 
  20. }

コード実装(最適化):

上記の表の縦の列を 1 次元配列として考えるか、縦にスキャンします。この場合、dp を 1 次元配列として定義するだけで済みます。

  1. countSubstrings =関数(s) {
  2. 定数len = s.length
  3. カウントを 0 にする
  4. const dp = 新しい配列(len)
  5.  
  6. (j = 0; j < len; j++)の場合{
  7. ( i = 0; i <= j; i++ とします) {
  8. s[i] === s[j] && (j - i <= 1 || dp[i + 1]) の場合 {
  9. dp[i] = 
  10. カウント++
  11. }それ以外{
  12. dp[i] = 
  13. }
  14. }
  15. }
  16. 戻る カウント;
  17. }

複雑性分析:

  • 時間計算量: O(n2)
  • 空間計算量: O(n)

リートコード: https://leetcode-cn.com/problems/palindromic-substrings/solution/leetcode647hui-wen-zi-chuan-by-user7746o/

<<:  ディープラーニングアーキテクチャにおける予測コーディングモデルに関しては、PredNetに目を向ける必要があります。

>>:  Leetcode の基本アルゴリズム: スライディング ウィンドウについてお話しましょう

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

上海に初のAI野菜市場が上陸。Alipayスキャンコード登録により、手をスワイプしてコードをスキャンするだけでドアが開く

[[250311]] 「顔スキャン」ではなく「手のひらスキャン」で、あなたの家のすぐそばに「AI野菜...

口を使ってiPhoneで10秒写真編集! UCSB Appleの中国人チームがマルチモーダルMGIEをリリース、オープンソースで誰でもプレイできることを公式発表

数日前、クック氏はアップルの電話会議で「生成AIは今年後半にリリースされる」と認めた。 ChatGP...

...

Dry goods: アルゴリズムの学習に役立つオープンソース プロジェクト

[[321744]]今日、LeetCode の問題やさまざまなアルゴリズム ルーチンを分析できる優れ...

1つのコマンドでChatGPTがさらに強力になります

GPT を使用する過程で、AI にニーズをより明確に理解させる方法が重要です。今日は、GPT をあな...

TFとPyTorchだけを知っているだけでは不十分です。PyTorchから自動微分ツールJAXに切り替える方法を見てみましょう。

現在のディープラーニング フレームワークに関しては、TensorFlow と PyTorch を避け...

Microsoft AI の面接の質問はどれくらい難しいですか?サンプルロールはこちら

ビッグデータ概要編纂者:張南星、魏青、銭天培マイクロソフトのような大企業は、どのような AI 人材を...

今後数年間の AI テクノロジーの分野で最も注目される新しい方向性は何でしょうか?

近年、AI の分野を調査しているうちに、世界中の研究者の視野の中に敵対的攻撃という概念が徐々に現れて...

A100よりもコストパフォーマンスに優れています! FlightLLM により、大規模モデル推論でパフォーマンスとコストを同時に心配する必要がなくなりました。

端末側での大規模言語モデルの適用により、コンピューティング性能とエネルギー効率の需要が「引き出され」...

...

5G時代、移動ロボットは知能でどのように勝利できるのでしょうか?

移動ロボットは、環境認識、動的意思決定と計画、行動制御と実行などの複数の機能を統合した総合システムで...

このガイドを理解することで、ニューラルネットワークの「ブラックボックス」をマスターすることができます。

「人間のニューラルネットワークはどのように機能するのか?」この質問は多くのデータ サイエンティスト...

...

アリババクラウド南京雲奇カンファレンス:スマート製造モデルの共有と最先端技術の発表

[51CTO.comより引用] 本日、アリババクラウドカンファレンス南京サミットが正式に開催され、ま...