高速ドローンは森の中を自律的に飛行し、旅の間中独自のルートを計画し、最高時速40キロメートルで飛行する。

高速ドローンは森の中を自律的に飛行し、旅の間中独自のルートを計画し、最高時速40キロメートルで飛行する。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

ドローンが時速40キロメートルで飛行しているのを目にするのは珍しいことではありません。

しかし、密林の中をこのスピードで移動し、さらには「自力で歩く」ことができるものを見たことがありますか?

このような優れた障害物回避や飛行操作は、人間がハンドルを操作することによって実現されるのではなく、ドローンの「自己管理認識」に完全に依存しています。

動く障害物に遭遇しても、ドローンより遅い限りは回避できます。

この自律型障害物回避ドローンは、チューリッヒ大学とインテルが共同で開発しました。

具体的には、ステレオ深度カメラが目として使用され、ドローンが障害物を視認し、飛行軌道を独自に計画できるようになります。

異なる性能のカメラを交換することで、さまざまなタスクを自律的に完了することもできます。

たとえば、自分に向かってくるバスケットボールをかわすには、次のようにします。

また、ドローンアクロバットと呼ばれる難しい飛行経路を実行することもできます。

こんなに柔軟なドローンはどうやって作られたのでしょうか?

1対1のドローン障害物回避学習

従来のドローンの自律障害物回避飛行には、一般的に情報処理、地図作成、ルート計画が含まれます。

しかし、ドローンに搭載されているチップの性能には限界があり、情報がタイムリーに処理されない場合、ドローンが障害物に衝突して事故を引き起こす可能性があります。

情報処理の速度を上げたい場合は、3 つのステップを 1 つのステップに統合し、機械学習を使用して入力から出力までのマッピングを完了する方がよいでしょう。

具体的には、センサー情報入力から飛行軌跡を直接出力する処理方式であり、従来の方法に比べて大幅に高速化されています。

上記の表に示すように、このアルゴリズムでは、従来の FastPlanner および Reactive パス計画方法よりも処理時間が短くなります。 Reactive の処理速度も非常に高速ですが、高速時にはパフォーマンスが低下します。

では、ドローンはどのようにしてセンサー入力から飛行軌道への出力マッピングを直接実現するのでしょうか?

ここでは、トレーニングをシミュレートするために畳み込みネットワークが使用されます。

シミュレーションにおけるニューラル ネットワーク トレーニングでは、3D ポイント クラウドを使用して、シミュレーション トレーニングにおける環境の状態とドローンのクアッドコプターの状態を正確に推定できる「エキスパート コントローラー」が使用されます。

シミュレーショントレーニングには時間制限がないため、「エキスパートコントローラー」はエンドツーエンドのポリシーを独自にさらに完全にトレーニングできます。

コントローラは、メトロポリス・ヘイスティングス (MH) アルゴリズムを使用して、軌道の分布を計算し、マルチモード ナビゲーション ソリューションを取得します。

このプロセスでは、エンドツーエンドのポリシー トレーニングは次の図に示されています。

訓練を受けた「エキスパートコントローラー」が「学生コントローラー」に実際のドローンの操縦方法を教えます。

「学生コントローラー」が飛行中に「エキスパートコントローラー」を追跡する場合、使用されるセンサー入力は抽象化され、現実世界の不正確な環境データをシミュレートします。

センサーによって入力された実際の画像データは、シミュレートされた環境と一致するデータに抽象化および処理され、現実のトレーニング軌跡のマッピングが完了します。

ドローンは、雪、脱線した列車、廃墟、密集した植生、倒壊した建物などのシーンでの自律移動を実現しました。

ドローンは、モーション ブラー、センサー ノイズ、その他の知覚アーティファクトも簡単に処理できます。

森林を制覇できるドローンにも「禁制地帯」がある

もちろん、このドローンの性能は現時点では完璧ではありません。

シミュレーション システムを現実世界に完全にコピーすることはできません。現実には、シミュレートできない予期しないイベントが常に存在します。

たとえば、暗い場所や視覚に影響を与えるその他の環境条件では、カメラの認識が制限される可能性があります。たとえば、霧が深い天候や透明または反射面がある場合、ドローンは障害物を正確に回避できません。

熟練したコントローラーのトレーニングには動的な障害物の回避は含まれていないため、高速で移動する物体は依然としてドローンにとって大きな脅威となります。

パフォーマンスの最適化に関して、研究者らは次のように指摘した。

これらの視覚的な制限は、従来のカメラの代わりにイベント カメラを使用するだけで克服できます。

環境情報をより速く処理できるセンサーが、将来の高速ドローンの構成方向となるでしょう。

同時に、関係専門家は現実世界もドローンの訓練の場になる可能性があるとも言及した。

センサー機能とコンピューターの能力が向上するにつれて、ドローンはより複雑な環境でも時速40キロメートルを超える速度で飛行できるようになるでしょう。

<<:  ニューラルネットワークの発明者、福島邦彦氏が受賞、シュミットフーバー氏とフェイフェイ・リー氏が賛辞を送る

>>:  sim2realでワールドモデルを使用すると、ロボットは視覚的な想像力とインタラクティブな実験を通じて学習します

ブログ    
ブログ    

推薦する

次世代モバイルコンピューティングの予測

テクノロジーは前例のない速度で進歩しており、モバイル コンピューティングの将来は変革的な進歩を約束し...

2020年、アルゴリズムの話題が主流になる年

[[397576]]システムに閉じ込められた配達員から人々が飽きることのないソーシャルメディアまで、...

人工知能とビッグデータを完璧に組み合わせる方法

[[271155]]ビッグデータと AI ツールを組み合わせることで、新しい形式の分析と自動化が可能...

研究者はディープラーニングモデルを使って交通事故を予測する

[51CTO.com クイック翻訳]現在の世界は、コンクリートやアスファルトでできた巨大な迷路のよう...

権威あるレポート:テンセントクラウドAIパブリッククラウドの市場シェアが初めて中国でトップ3にランクイン

ちょうど今、国際データコーポレーション(IDC)が発表した最新の「中国人工知能クラウドサービス市場調...

2021年に予測される6つのテクノロジートレンド

2020年、COVID-19パンデミックは世界各国の経済に壊滅的な影響を及ぼし、業界を問わずビジネス...

...

Apple Watchも新型コロナウイルスを検知可能:症状が出る7日前に検知可能

現在、新型コロナウイルスの核酸検査のほとんどは、咽頭ぬぐい液を使って行われている。スマートウォッチを...

メタバースは過大評価されてきたが、2050年までにAIによって現実のものとなる

メタバースの概念が誇張され、まるでそれが本当に存在するかのように人々が話していることは間違いありませ...

脳をシミュレートする NLP、クヌース賞受賞: 文解析のためのニューロン集団計算

[[402907]]先週、Google Research はディープラーニングにおける概念理解に関す...

賢明な企業はヘルスケアにおける認知AIの成功から学ぶことができる

認知技術は世界最大の課題を解決するために使用されています。この記事では、企業が認知 AI をどのよう...

...

アリババのPingtouge Xuantie CPUが重要な進歩を遂げました。RISC-V + Android 12 AIサポートを初めて実現しました。

アリババの平頭半導体は、ARMアーキテクチャの自社開発プロセッサYitian 710の商用化を実現し...

劉慈欣は人工知能について語る: 前方にある知能と同じくらい人工知能も存在する。

[[248113]]画像出典: IDG Capital最近開催された2018年の「IDGキャピタル...

SVM のマップ削減データマイニングアルゴリズム

元のアルゴリズムに並列戦略を適用するのは難しいため、他のアルゴリズムのバリアントである pegaso...