毎日のアルゴリズム: バランスのとれた二分木

毎日のアルゴリズム: バランスのとれた二分木

[[426529]]

この記事はWeChatの公開アカウント「3分でフロントエンドを学ぶ」から転載したもので、著者はsisterAnです。この記事を転載する場合は、「3分で学ぶフロントエンド」公式アカウントまでご連絡ください。

木の基礎については、こちらをご覧ください: 初心者のための木

二分木が与えられた場合、それが高さバランスの取れた二分木であるかどうかを判断します。

この問題では、高度にバランスのとれた二分木は次のように定義されます。

バイナリ ツリー内の各ノードの左側のサブツリーと右側のサブツリー間の高さの差の絶対値は 1 を超えません。

例1:

二分木[3,9,20,null,null,15,7]が与えられた場合

  1. 3
  2. / \
  3. 9 20
  4. / \
  5. 15 7

true を返します。

例2:

二分木[1,2,2,3,3,null,null,4,4]が与えられた場合

  1. 1
  2. / \
  3. 22
  4. / \
  5. 3 3
  6. / \
  7. 4 4

false を返します。

解決策 1: トップダウン (ブルートフォース)

解決方法: 各ノードの左サブツリーと右サブツリーの最大高さの差を上から下まで比較します。バイナリ ツリー内の各ノードの左サブツリーと右サブツリーの最大高さの差が 1 以下、つまり各サブツリーのバランスが取れている場合、バイナリ ツリーはバランスの取れたバイナリ ツリーです。

コード実装:

  1. const isBalanced =関数(ルート) {
  2. if(!root)戻り値 真実 
  3. Math.abs (depth(root.left ) -depth( root.right ) ) <= 1を返す
  4. && isBalanced(ルート.left )
  5. && isBalanced(ルート.right )
  6. }
  7. const depth =関数(ノード) {
  8. if(!node) は-1を返します
  9. 1 + Math.max ( depth(node.left ) ,depth(node.right ) )を返します
  10. }

複雑性分析:

  • 時間計算量: O(nlogn)、深さを計算する際に多くの冗長な操作がある
  • 空間計算量: O(n)

解決策2: ボトムアップ(最適化)

解決方法: バイナリ ツリー (左ルートと右ルート) の後続のトラバーサルを使用して、下から上へのサブツリーの最大の高さを返し、各サブツリーがバランスの取れたツリーであるかどうかを判断します。バランスが取れている場合は、その高さを使用して親ノードがバランスが取れているかどうかを判断し、親ノードの高さを計算します。バランスが取れていない場合は、-1 を返します。

バイナリ ツリー内の各ノードの左サブツリーと右サブツリーの深さを走査して比較します。

  • 左と右のサブツリーの深さを比較します。差が 1 より大きい場合は、現在のサブツリーが不均衡であることを示すフラグ -1 を返します。
  • 左と右のサブツリーのいずれかがバランスが取れていない場合、または左と右のサブツリーの差が 1 より大きい場合、バイナリ ツリーは不均衡です。
  • 左と右のサブツリーのバランスが取れている場合は、現在のツリーの深さ(左と右のサブツリーの最大深さ + 1)を返します。

コード実装:

  1. const isBalanced =関数(ルート) {
  2. balanced(root) !== -1を返す
  3. };
  4. const balanced =関数(ノード) {
  5. if (!node) が0 を返す
  6. 定数left = balanced ( node.left )
  7. 定数right = balanced( node.right )
  8. if (=== -1 ||=== -1 || Math.abs (-) > 1) {
  9. -1を返す
  10. }
  11. Math.max ( left , right )+1返す
  12. }

複雑性分析:

  • 時間計算量: O(n)
  • 空間計算量: O(n)

<<:  AIと自動化を活用して機密データを大規模に識別する方法

>>:  清華大学のAI学生が顔を見せて歌う、この応用は将来に期待される

ブログ    
ブログ    

推薦する

ML 向け勾配降下法アルゴリズム 機械学習初心者向け勾配降下法アルゴリズム

[[197951]]基本概念このセクションでは、勾配降下法をより一般化するために、機械学習アルゴリズ...

コカ・コーラの新たな試み:アートや広告制作における生成AIの活用

生成型 AI の新たな波に直面して、私たちはそれに積極的に適応するか、AI (または AI を受け入...

アイデンティティ管理における人工知能の脅威

Cyber​​Ark の 2023 年アイデンティティ セキュリティ脅威ランドスケープ レポートでは...

第一線のSASEがエッジAIを護衛

データの共有と流通が厳格な要求になると、もともと孤立していたビジネス ネットワークは境界を打ち破り、...

ロボット犬をDIYするにはどれくらいの費用がかかりますか?価格は900ドルと安く、スタンフォード大学が開発し、コードはオープンソースです

たった 900 ドルで四足ロボット犬を DIY できる?スタンフォード学生ロボットクラブの新メンバー...

PyTorch から Mxnet まで、7 つの主要な Python ディープラーニング フレームワークを比較

[[184728]]最近、Data Science Stack Exchange の「ニューラル ネ...

...

...

ETHは、画像の超解像と画像の再スケーリングを考慮して、新しい統合フレームワークHCFlowを提案しています。

[[423154]]近年、正規化フローモデルは、画像超解像(画像SR)[SRFlow、ECCV20...

...

ビル・ゲイツ:AIが最大の影響を与えるには何十年もかかる

[[271684]]ビル・ゲイツは、世界を変えるトレンドを予見し、それを活用することで、史上最も成功...

AIの力を活用してITを進化させる

[[436560]]世界中の IT プロフェッショナルは、膨大なデータに圧倒され、本当に重要な洞察を...

AIがコンピューティングをエッジに押し上げる

[[408175]]ここ数年の流行語といえば、エッジ コンピューティングは 5G や AI と密接に...

...