医療画像データと他の日常的な画像との最大の違いの 1 つは、DICOM シリーズ データを扱う場合、特にそれらの多くが 3D であることです。 DICOM 画像は、スキャンまたは体の特定の部分を構成する多数の 2D スライスで構成されています。 では、このタイプのデータ用のディープラーニング ソリューションをどのように構築すればよいのでしょうか? この記事では、3D 医療データでディープラーニング モデルをトレーニングするために使用できる 6 つのニューラル ネットワーク アーキテクチャを紹介します。 3D UネットU-Net アーキテクチャは、医療画像のセグメンテーションのための強力なモデルです。 3D U-Net は、従来の U-Net モデルを 3D セグメンテーションに拡張します。エンコード(ダウンサンプリング)パスとデコード(アップサンプリング)パスで構成されます。 エンコード パスは入力画像のコンテキストをキャプチャし、デコード パスは正確なローカリゼーションを可能にします。 3D U-Net は、ボリューム画像の 3D 特性の処理に非常に効果的です。 VネットV-Net アーキテクチャは、ボリューム画像セグメンテーション用の別の 3D 畳み込みニューラル ネットワークです。 U-Net と同様に、V-Net にはエンコーダー/デコーダー アーキテクチャがありますが、フル解像度の 3D 畳み込みを使用するため、U-Net よりも計算コストが高くなります。 ハイレゾネット残差接続を持つ一連の 3D 畳み込み層を使用します。モデルはエンドツーエンドでトレーニングされており、3D 画像全体を一度に処理できます。 エフィシェントネット3Dこれは、EfficientNet アーキテクチャの 3D 改良版です。U-Net や V-Net ほど 3D セグメンテーションによく使用されるわけではありませんが、計算コストとパフォーマンスのトレードオフが優れているため、計算リソースが限られている場合に検討できます。 U-Netへの注目これは、ネットワークが現在のタスクに関連性の高い画像の特定の部分に集中できるようにする注意メカニズムを組み込んだ U-Net のバリエーションです。 ディープメディックこれは、通常の解像度用とダウンサンプリングされた入力用の 2 つのパスを使用する 3D CNN であり、ローカル情報とより大きなコンテキスト情報の両方を組み込むことができます。 要約するこの記事では、医療画像業界で 3D MRI および CT スキャンを処理するために使用されているいくつかのディープラーニング モデルを紹介しました。これらのニューラル ネットワークは、3D データを入力として受け取り、DICOM シリーズの特定の体の部分の複雑さを学習するように設計されています。 |
>>: LK-99「早納品、遅案内」?インドの科学者は、新しいメロンを生産するために原作者から指導を受ける:新しいサンプルは量子ロックと良好な伝導性を示す
[[426278]] 2021年1月、コンピュータサイエンスと人工知能分野のトップ学者であるエリッ...
モバイル決済は今や人々の生活の一部となり、人々に迅速で便利なショッピング体験をもたらしています。現在...
人工知能の基礎教育を強化することは、将来の社会の発展に備えるための避けられない選択であり、要件です。...
「エネルギー自己教師学習っていったい何?」と多くのRedditネットユーザーがコメントした。ちょう...
世界の人工知能(AI)市場は2027年までに2,670億ドルに達すると予想されています。しかし、テク...
CVPR 2021で発表された論文の中で、NetEase Fuxiとミシガン大学の研究者は、制御可能...
クラウド セキュリティのスタートアップ企業 Wiz の研究者は、SAS トークンの設定ミスが原因で、...
このシリーズの前回の記事では、まず TensorFlow の使い方を紹介しました。これは、人工知能お...
これは、実際の仕事でデータを扱う学生にとって最大の問題点です。今日は、オペレーションを例に、行き詰ま...
AI は時間の経過とともにさらに賢くなり、パワーを増していきます。私たちの多くにとって、人工知能 ...
1980 年代に、FICO はロジスティック回帰アルゴリズムに基づく FICO クレジット スコアリ...