データセットと DataLoader を使用して PyTorch でデータをカスタマイズする

データセットと DataLoader を使用して PyTorch でデータをカスタマイズする

大規模なデータセットを扱う場合、データ全体を一度にメモリにロードすることが非常に困難になることがあります。

したがって、唯一の方法は、処理のためにデータをバッチでメモリにロードすることであり、これを行うには追加のコードを記述する必要があります。この目的のために、PyTorch はすでに Dataloader 関数を提供しています。

データローダー

PyTorch ライブラリの DataLoader 関数の構文とそのパラメータ情報を以下に示します。

  1. DataLoader(データセット、batch_size=1、shuffle= False 、sampler=None、
  2. batch_sampler=なし、num_workers=0、collat​​e_fn=なし、
  3. pin_memory= False 、drop_last= False 、タイムアウト=0、
  4. worker_init_fn=なし、*、prefetch_factor=2、
  5. persistent_workers = False )

いくつかの重要なパラメータ

  • データセット: まずデータセットを使用して DataLoader クラスを構築する必要があります。
  • シャッフル: データを再編成するかどうか。
  • Sampler : オプションの torch.utils.data.Sampler クラス インスタンスを参照します。サンプラーは、サンプルを順番に、ランダムに、またはその他の方法で取得するための戦略を定義します。サンプラーを使用する場合は、シャッフルを false に設定する必要があります。
  • Batch_Sampler: バッチレベル。
  • num_workers: データをロードするために必要な子プロセスの数。
  • collat​​e_fn : サンプルをバッチにまとめます。 Torch ではカスタム照合が可能です。

組み込みのMNISTデータセットをロードする

MNIST は手書きの数字を含む有名なデータセットです。 DataLoader 機能を使用して PyTorch の組み込み MNIST データセットを処理する方法を説明します。

  1. 輸入トーチ
  2. matplotlib.pyplot をpltとしてインポートします。
  3. torchvisionからデータセットをインポートし、変換する

上記のコードは、torchvision の torch コンピュータ ビジョン モジュールをインポートします。これは画像データセットを操作するときによく使用され、画像の正規化、サイズ変更、切り抜きに役立ちます。

MNIST データセットの場合、次の正規化手法が使用されます。

ToTensor() は、0〜255 のグレースケール範囲を 0〜1 に変換できます。

  1. 変換 = transforms.Compose([transforms.ToTensor()])

必要なデータセットを読み込むには、次のコードを使用します。 PyTorchDataLoader を使用して、batch_size = 64 を指定してデータをロードします。 shuffle=True はデータをシャッフルします。

  1. trainset = datasets.MNIST( '~/.pytorch/MNIST_data/' 、 download= True 、 train= True 、 transform=transform)
  2. トレインローダー = torch.utils.data.DataLoader(トレインセット、バッチサイズ = 64、シャッフル = True )

データセット内のすべての画像を取得するには、通常、iter 関数とデータ ローダー DataLoader を使用します。

  1. dataiter = iter(trainloader)
  2. 画像、ラベル = dataiter.next ()
  3. 印刷(images.shape)
  4. 印刷(ラベル.形状)
  5. plt.imshow(images[1].numpy().squeeze(), cmap= 'Greys_r' )

カスタムデータセット

次のコードは、1000 個の乱数を含むカスタム データセットを作成します。

  1. torch.utils.dataからデータセットをインポート
  2. ランダムにインポート
  3.   
  4. クラスSampleDataset(データセット):
  5. __init__(self,r1,r2)を定義します。
  6. ランダムリスト=[]
  7. iが範囲(120)内にある場合:
  8. n = ランダム.randint(r1,r2)
  9. ランダムリストに追加(n)
  10. self.samples = ランダムリスト
  11.   
  12. __len__(自分)を定義します:
  13. len(self.samples)を返す
  14.   
  15. __getitem__(self, idx)を定義します。
  16. 戻り値(self.samples[idx])
  17.   
  18. データセット=サンプルデータセット(1,100)
  19. データセット[100:120]

ここに画像の説明を挿入

最後に、カスタム データセットでデータローダー関数を使用します。 batch_size は 12 に設定され、num_workers = 2 で並列マルチプロセス データ ロードも有効になります。

  1. torch.utils.dataからDataLoader をインポートします
  2. ローダー = DataLoader(データセット、バッチサイズ=12、シャッフル= True 、num_workers=2)
  3. iの場合 enumerate(loader)バッチ処理します。
  4. print(i, バッチ)

以下では、いくつかの例を通して、大量のデータをバッチでメモリにロードする際の PyTorch Dataloader の役割について学習します。

<<:  再帰アルゴリズム: 不可解なスイッチ「ライトを引く」

>>:  Go データ構造とアルゴリズムの基本クイックソート

ブログ    
ブログ    
ブログ    

推薦する

Google: 2020年5月のコアアルゴリズムアップデート、多数のウェブサイトに影響

Google のアルゴリズムは毎年何百回も更新されます (Google は通常、これらの更新について...

...

...

一般相対性理論の予測に沿って、M87ブラックホールの最新の研究結果がネイチャー誌に掲載されました。

9月27日、ネイチャー誌は45の機関からなる国際科学研究チームの最新の研究成果を発表した。 200...

考えてみてください。連合学習は大規模な言語モデルをトレーニングできるのでしょうか?

1. 概要大規模言語モデル (LLM) の急速な発展に伴い、LLM が人工知能業界の発展に与える影...

自動応答は人工知能ではなく、自律応答は

セキュリティ オペレーション センター (SOC) のアナリストは推論と意思決定に優れていますが、2...

3億7500万人の労働者が転職する?人工知能が代替できない分野はどれですか?

人工知能は急速に発展しています。データによると、2016年から2020年にかけて、中国の人工知能市場...

「安佳」の人工知能版? 「AI仲介人」が近々登場?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

UiPath: RPA の台頭が企業のデジタル化の青写真を描く

【51CTO.comオリジナル記事】 [[344118]]近年、ロボティック・プロセス・オートメーシ...

金融AIの実装は難しいですか?ガートナー: AI のユースケースを 3 倍にするには 4 つのステップが必要

金融分野で AI を適切に導入するには、単に時間や資金を最も多く投資すればよいという問題ではありませ...

...

アップル、シアトルのAI研究開発施設を拡張へ

海外メディアの報道によると、アップルは最近シアトルの人工知能研究開発センターのオフィススペースを拡大...

機械学習はサイバーセキュリティをどのように向上させることができるのでしょうか?

今日では、機械学習に大きく依存せずに強力なサイバーセキュリティ ソリューションを展開することは不可能...

...

Qi Lu: 人工知能の時代では、チップと基盤となるソフトウェアは基本的に作り直す必要がある

2019年5月18日、YC Chinaが開催したYC China起業家会議において、YC China...