Python のデータ構造とアルゴリズム - 優先度キュー

Python のデータ構造とアルゴリズム - 優先度キュー

[[405132]]

序文

キュー ライブラリは、マルチスレッド プログラミングに適した先入れ先出し (FIFO) データ構造を提供します。これを使用して、プロデューサー スレッドとコンシューマー スレッド間でメッセージやその他のデータを安全に渡すことができます。

呼び出し元のロック処理を行い、複数のスレッドが同じ Queue インスタンスを安全かつ簡単に操作できるようにします。メモリ使用量や処理を制限するために、キューのサイズが制限される場合があります。

基本的な使い方

Queue クラスは、基本的な先入れ先出しコンテナーを実装します。 put() を使用してこのシーケンスの一方の端に要素を追加し、get() を使用してもう一方の端から要素を削除します。具体的なコードは次のとおりです。

  1. インポートキュー
  2.  
  3. q = キュー.キュー()
  4.  
  5. iが範囲(1, 10)内にある場合:
  6. q.put(i)
  7. q.empty()ではない場合:
  8. print(q.get(),終了= " " )

実行後の効果は次のようになります。

ここでは、1 から 10 までを順番にキューに追加します。先入れ先出しの原則により、出てくる順序は追加された順序と同じになります。

LIFO キュー

先入れ先出しキューが存在するため、データ構造には後入れ先出しキューが存在する必要があります。後入れ先出しキューは LifoQueue です。例は次のとおりです。

  1. インポートキュー
  2.  
  3. q = キュー.LifoQueue()
  4.  
  5. iが範囲(1, 10)内にある場合:
  6. q.put(i)
  7. q.empty()ではない場合:
  8. print(q.get(),終了= " " )

実行後の効果は次のようになります。

優先キュー

オペレーティング システムでは、多くの場合、優先度に基づいてタスクを処理します。たとえば、システムの優先度が最も高い場合は、必ず最初にシステム タスクを処理し、次にユーザー タスクを処理します。同様に、キュー ライブラリは、優先キューを処理するための PriorityQueue を提供します。

次に例を示します。

  1. インポートキュー
  2. インポートスレッド
  3.  
  4. クラスジョブ:
  5. def __init__(self, 優先度, desc ):
  6. self.priority = 優先度
  7. 自己.desc = desc  
  8. print( "新しい仕事: " , desc )
  9. 戻る 
  10.  
  11. __eq__(自分、他):
  12. 試す:
  13. self.priority == other.priorityを返す
  14. AttributeErrorを除く:
  15. 実装されていないを返す
  16.  
  17. __lt__(自分、他):
  18. 試す:
  19. self.priority > other.priorityを返す
  20. AttributeErrorを除く:
  21. 実装されていないを返す
  22.  
  23. process_Job(q)を定義します。
  24. 真の場合:
  25. 次のジョブ = q.get()
  26. 印刷( next_job.desc )
  27. タスク完了()
  28.  
  29. q = キュー.優先度キュー()
  30.  
  31. q.put(Job(5, "5つの仕事" ))
  32. q.put(Job(15, "15の仕事" ))
  33. q.put(Job(1, "1つのジョブ" ))
  34.  
  35. 労働者 = [
  36. スレッド化.Thread(ターゲット=process_Job、引数=(q,))、
  37. スレッド化.Thread(ターゲット=process_Job、引数=(q,))、
  38. ]
  39.  
  40. のために 仕事 労働者の場合:
  41. 作業.setDaemon( True )
  42. 作業.開始()
  43.  
  44. q.join ()関数

実行後の効果は次のようになります。

ここでは、値が大きいほど優先度が高くなるようにデフォルト設定されています。15 が最初に実行され、その後に 5 と 1 のタスクが実行されていることがわかります。この例では、複数のスレッドがタスクを処理している場合、get() 中にキュー内の要素の優先度に従ってタスクが処理されることを示しています。

<<:  アラスカ航空は人工知能を活用して時間、燃料、費用を節約

>>:  マッピングドローンは多くの「ファン」を獲得しており、これらの利点は刺激的です

ブログ    
ブログ    
ブログ    

推薦する

Googleは、自社のBardを含むチャットボットの使用には注意するよう従業員に警告している。

ロイター通信は6月19日、事情に詳しい4人の関係者の話として、グーグルの親会社アルファベットはチャッ...

OpenAIのCLIPは「平易な言葉」を使った正確な画像検索で皆を驚かせた

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

機械学習とコンピュータービジョンのためのトップ 20 画像データセット

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...

IDC: 欧州の人工知能への支出は2022年に220億ドルに達する

インターナショナル・データ・コーポレーション(IDC)の新しい世界人工知能支出ガイドでは、ヨーロッパ...

4つのレベルから見た人工知能の経済分析

[51CTO.com クイック翻訳] 人工知能 (AI) システムは経済を変え、大量の失業と巨大な独...

AIのおかげで、これら5つの業界の求人需要は大幅な成長傾向を示すだろう

編集者注: 人工知能と人間の仕事は、今日多くの人が話題にしているトピックであり、議論の焦点は主に、人...

...

Boyaのディープラーニング製品がHuman Horizo​​nsの自動運転実現に貢献

ヒューマンホライゾンズテクノロジーズ株式会社は、新エネルギー車、インテリジェントネットワーク、共同交...

...

ViT以外にも、美団、浙江大学などが、視覚タスクのための統合アーキテクチャであるVisionLLAMAを提案した。

過去 6 か月間にわたり、Meta のオープン ソース LLaMA アーキテクチャはテストされ、LL...

...

...

...

...