ビッグデータダイジェスト制作 出典: Engadget 編集:赤道のパンダ 人工知能はゲームや自動運転車などの分野に参入し、さまざまな成功を収めてきたが、今度は料理にも挑戦し始めている。 GoogleのAI技術がイギリスのベーキングコンテスト「グレート・ブリティッシュ・ベイクオフ」の優勝者に勝利した後、ソニーはニンニク、オリーブ、牛乳などの材料を組み合わせる「FlavourGraph」と呼ばれるディープラーニングシステムを開発した。 ソニーと高麗大学(KU)の研究者らは、シェフが直感で食材の組み合わせ方を編み出し、チーズとトマト、豚肉とリンゴ、ニンニクとショウガといった食材の組み合わせが徐々に発展してきたと指摘した。研究者たちは、主要な風味分子を共有する食材は相性が良いことが多いことに気づき、多くの古典的な食品の組み合わせは後に科学的原理によって説明されるようになりました。一方、他のよく結合した成分は、根本的に異なる化学組成を持つ場合があります。 その理由を調べるために、研究チームは材料の分子情報と、それらが歴史的にレシピでどのように使用されてきたかを調べました。その後、研究者らは、1,561 個のフレーバー分子に基づいて苦味、フルーティー、甘味などのフレーバー プロファイルを保存する FlavorGraph データベースを作成しました。彼らはまた、過去にどのように食材が組み合わされてきたかを調べるために、約100万のレシピも調べました。 結果は、ワインや柑橘類の食品に共通する化学成分と、それが全体的な味にどのように影響するかを示しており、特定のワインや果物とどの食品がよく合うかを示唆しています。いくつかの食べ物の組み合わせは一般的ですが(クッキーとアイスクリーム)、他の食べ物の組み合わせはあまり一般的ではありません(白ワインとキャンベルの濃縮エノキ茸スープ)。研究者たちはまだ、(キャビアとホワイトチョコレートのような)特別な組み合わせを発見していないが、FlavorGraph は単なる出発点に過ぎない。 「科学が発展し、食品についてより多くを知るようになると、より興味深い食材の組み合わせや、不健康または持続不可能な食材の代替品が発見されるはずだ」と研究チームは書いている。 関連レポート: https://www.engadget.com/sonys-flavor-graph-uses-ai-to-predict-how-ingredients-will-pair-together-092935932.html [この記事は51CTOコラムBig Data Digest、WeChatパブリックアカウント「Big Data Digest(id: BigDataDigest)」のオリジナル翻訳です] この著者の他の記事を読むにはここをクリックしてください |
<<: Java プログラミング スキル - データ構造とアルゴリズム「非再帰的バイナリ検索」
01 機械学習アルゴリズム1. 分類アルゴリズムこれは教師あり学習法です。 K 最近傍法、決定木、単...
「働いてお金を稼ぐのは大変すぎるから、屋台を出して自分で経営者になったほうがいいよ!」露店経済の突然...
[[346568]] 1 スケジュールされたタスクNetty、Quartz、Kafka、Linux ...
4日間行方不明になっていた深海潜水艇「タイタン」は、予期せぬ壊滅的な爆発事故に見舞われた。乗組員5人...
近年、科学技術分野で最もホットな言葉は何でしょうか?5G、人工知能などが間違いなくそのリストに入って...
パーセプトロンは、バイナリ分類タスク用の線形機械学習アルゴリズムです。これは、人工ニューラル ネット...
AI スタートアップのアイデアは、わずか 2 か月の作業で商品化できるのでしょうか?今年のイノベーシ...
私たちはなぜ眠るのでしょうか? 明らかな理由の一つは、体と手足の力を回復することです。しかし、睡眠の...
比較的新しい概念である AIoT は、人工知能 (AI) とモノのインターネット (IoT) を組み...
皆さんこんにちは、Lugaです。今日も引き続き、人工知能(AI)エコシステムに関連する技術であるLa...
AI音声スタートアップ企業のソナンティックは、オーディオディープフェイクで小さな進歩を遂げ、からかっ...