ビッグデータダイジェスト制作 出典: Engadget 編集:赤道のパンダ 人工知能はゲームや自動運転車などの分野に参入し、さまざまな成功を収めてきたが、今度は料理にも挑戦し始めている。 GoogleのAI技術がイギリスのベーキングコンテスト「グレート・ブリティッシュ・ベイクオフ」の優勝者に勝利した後、ソニーはニンニク、オリーブ、牛乳などの材料を組み合わせる「FlavourGraph」と呼ばれるディープラーニングシステムを開発した。 ソニーと高麗大学(KU)の研究者らは、シェフが直感で食材の組み合わせ方を編み出し、チーズとトマト、豚肉とリンゴ、ニンニクとショウガといった食材の組み合わせが徐々に発展してきたと指摘した。研究者たちは、主要な風味分子を共有する食材は相性が良いことが多いことに気づき、多くの古典的な食品の組み合わせは後に科学的原理によって説明されるようになりました。一方、他のよく結合した成分は、根本的に異なる化学組成を持つ場合があります。 その理由を調べるために、研究チームは材料の分子情報と、それらが歴史的にレシピでどのように使用されてきたかを調べました。その後、研究者らは、1,561 個のフレーバー分子に基づいて苦味、フルーティー、甘味などのフレーバー プロファイルを保存する FlavorGraph データベースを作成しました。彼らはまた、過去にどのように食材が組み合わされてきたかを調べるために、約100万のレシピも調べました。 結果は、ワインや柑橘類の食品に共通する化学成分と、それが全体的な味にどのように影響するかを示しており、特定のワインや果物とどの食品がよく合うかを示唆しています。いくつかの食べ物の組み合わせは一般的ですが(クッキーとアイスクリーム)、他の食べ物の組み合わせはあまり一般的ではありません(白ワインとキャンベルの濃縮エノキ茸スープ)。研究者たちはまだ、(キャビアとホワイトチョコレートのような)特別な組み合わせを発見していないが、FlavorGraph は単なる出発点に過ぎない。 「科学が発展し、食品についてより多くを知るようになると、より興味深い食材の組み合わせや、不健康または持続不可能な食材の代替品が発見されるはずだ」と研究チームは書いている。 関連レポート: https://www.engadget.com/sonys-flavor-graph-uses-ai-to-predict-how-ingredients-will-pair-together-092935932.html [この記事は51CTOコラムBig Data Digest、WeChatパブリックアカウント「Big Data Digest(id: BigDataDigest)」のオリジナル翻訳です] この著者の他の記事を読むにはここをクリックしてください |
<<: Java プログラミング スキル - データ構造とアルゴリズム「非再帰的バイナリ検索」
新型コロナウイルス流行の影響で、人工知能(AI)は工場にとって必須のものとなった。 Google の...
最近、国家発展改革委員会は初めて「新インフラ」情報インフラの範囲を明確にした。5G、人工知能、クラウ...
昨年末、「運命を変えるスクリーン」が話題になった。当時、賛成派も反対派もそれぞれ多くの見解を述べてい...
ChatGPT キング爆弾の新たな波が来ています。本日、OpenAI は「カスタム指示」と呼ばれる...
1週間前、ChatGPTはメジャーアップデートを受けました。GPT-4とGPT-3.5の両モデルは、...
人工知能の開発にはまだまだ長い道のりが残っているようです。エルサレムのヘブライ大学の研究者らは、単一...
事実は、データ技術の進歩と発展により、仮想カードと電子ウォレットが支払い管理により適したものになって...
[[388553]] 3月18日夜、企業やメーカーが個人情報を不法に収集し、商業目的で利用する事件が...
IT Homeは1月23日、Googleが最近、大規模言語モデル向けに特別に設計されたASPIREト...