GoogleはAIチップに出産を学習させ、次世代のTPUはAI自身によって設計される

GoogleはAIチップに出産を学習させ、次世代のTPUはAI自身によって設計される

[[405016]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

AIチップの設計はどれくらい難しいのでしょうか?

こう言いましょう。囲碁の複雑さは 10360 ですが、チップは 102500 です。ちょっと考えてみましょう...

△囲碁の複雑さ

一般的に、エンジニアがチップを設計するには数週間から数か月かかります。

今、AI による生産性向上がここにあります!

AIはわずか6時間で独自にチップを設計しました。

最近、この Google の研究が Nature 誌に掲載されました。

レイアウト時間が数倍短縮

小さなチップには数十億個のトランジスタが含まれており、それらで構成される数千万個の論理ゲートが標準ユニットであり、マクロブロックと呼ばれる数千個のストレージブロックもあります。

それらの位置、つまりフロアプランを決定することは、チップ設計にとって非常に重要です。

これは配線方法に直接関係しており、チップの処理速度と電力効率に影響します。

ただし、マクロブロックの配置手順だけでも非常に時間がかかり、標準セル用のスペースを増やすために各反復に数日または数週間かかります。

△人間が設計したチップとAIが設計したチップの平面図(灰色のブロックはマクロブロック)

レイアウト全体を完成させるには、数週間から数か月かかることもあります。

現在、Google の研究者は、一般化できるチップレイアウト方法を提案しています。

深層強化学習に基づいて以前のレイアウトを学習し、新しいデザインを生成することができます。全体的なアーキテクチャは次のとおりです。

AIモデルは10万個のチップレイアウトを学習する必要があるため、速度を確保するために、研究者らは、配線の長さと配線の混雑度のおおよそのコスト関数に基づいて計算される報酬メカニズムを設計しました。

具体的には、マクロと標準セルをフラットなキャンバスにマッピングして、数百万から数十億のノードを持つ「チップ ネットリスト」を形成する必要があります。

次に、AI モデルは電力、パフォーマンス、面積 (PPA) などの要素を最適化し、確率分布を出力します。

次の図は、事前トレーニング戦略に基づくゼロサンプル生成と微調整の効果を示しています。各小さな四角形はマクロブロックを表しています。事前トレーニング戦略では、標準ユニットを配置するためのスペースが中央に残されています。

Google の新しいアプローチでは、他の方法と比較して設計時間が大幅に短縮され、パフォーマンスが最適化されたレイアウトを実現するのに6 時間もかかりません

Google: 効果は良好で使用済み

研究チームは、さまざまな戦略におけるレイアウト効果を視覚化しました。図から、事前トレーニング戦略を微調整した結果が、ゼロサンプル生成よりも大幅に優れていることがわかります。

さらに、異なるトレーニング期間の効果を比較すると、 2〜12時間のトレーニングの場合、事前トレーニング戦略はゼロサンプル生成よりも優れていることがわかります。

研究者たちは、さまざまなサイズのデータ​​セットでテストを行った結果、データセットのサイズが大きくなるにつれて、生成されるレイアウトの品質と収束時間の結果が向上することを発見しました。

グーグルはこう言った。

このアプローチは、あらゆるタイプのチップに適用できます。

現在、次世代の Google TPU(アクセラレータ チップ)の製造に使用されています。

<<:  業界アプリケーション: ドローンに正確な測位技術を提供するにはどうすればよいでしょうか?

>>:  ヘルスケアにおける人工知能の応用

ブログ    
ブログ    

推薦する

バックアップと災害復旧のための生成AIツールはまだ初期段階にある

バックアップ ソフトウェア ベンダーはすでに自動化と仮想アシスタント用の生成 AI ツールを導入して...

都市の気質を改善し、住みやすい環境を守る。AIはガバナンスの閉ループを開く

「新しいインフラ」は新たな方向性を表しています。新旧の成長原動力の転換という文脈において、「新インフ...

人工知能画像生成技術:わずか5年でなぜ急速な発展を遂げたのか?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

データセットと DataLoader を使用して PyTorch でデータをカスタマイズする

大規模なデータセットを扱う場合、データ全体を一度にメモリにロードすることが非常に困難になることがあり...

製造業の発展は新たな課題に直面しており、人工知能が重要な役割を果たすだろう

[[245913]]現在、製造業の発展は新たな歴史的時期を迎えており、世界各国間の競争の焦点となって...

Alibaba Damo AcademyのJin Rong氏:テクノロジーから科学へ、中国のAIはどこへ向かうのか?

ダートマス会議から数えると、AIは65年の歴史を歩んできました。特に近年のディープラーニングの台頭に...

...

ブロックチェーンと機械学習はどのようにして最も強力な人工知能を生み出すのでしょうか?

ブロックチェーン市場のデータに基づいて機械学習モデルをトレーニングすることで、世界で最も影響力のある...

百度の最新アルゴリズム調整対応戦略

Baiduの最新アルゴリズム調整対応戦略、4つの対策でBaiduの最新アルゴリズム調整に対応します。...

ディープラーニングのパイオニア、ヤン・ルカン氏、叱責を受けてツイッターを辞める「皆さんはもうすべて知っています。これからは何も言いません」

2週間に及ぶ「舌戦」の末、チューリング賞受賞者でフェイスブックの主任AI科学者であるヤン・ルカン氏...

...

工業情報化部の李英査察官:我が国の人工知能の発展は歴史的な好機を迎えている

[[253791]]工業情報化部情報技術・ソフトウェアサービス局検査官 李英氏李英氏は、一連の措置を...

レビュー能力はGPT-4よりも強く、13B評価モデルAuto-Jはオープンソース化されている

生成型人工知能技術の急速な発展に伴い、大規模なモデルが人間の価値観(意図)と一致するようにすることが...