GoogleはAIチップに出産を学習させ、次世代のTPUはAI自身によって設計される

GoogleはAIチップに出産を学習させ、次世代のTPUはAI自身によって設計される

[[405016]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

AIチップの設計はどれくらい難しいのでしょうか?

こう言いましょう。囲碁の複雑さは 10360 ですが、チップは 102500 です。ちょっと考えてみましょう...

△囲碁の複雑さ

一般的に、エンジニアがチップを設計するには数週間から数か月かかります。

今、AI による生産性向上がここにあります!

AIはわずか6時間で独自にチップを設計しました。

最近、この Google の研究が Nature 誌に掲載されました。

レイアウト時間が数倍短縮

小さなチップには数十億個のトランジスタが含まれており、それらで構成される数千万個の論理ゲートが標準ユニットであり、マクロブロックと呼ばれる数千個のストレージブロックもあります。

それらの位置、つまりフロアプランを決定することは、チップ設計にとって非常に重要です。

これは配線方法に直接関係しており、チップの処理速度と電力効率に影響します。

ただし、マクロブロックの配置手順だけでも非常に時間がかかり、標準セル用のスペースを増やすために各反復に数日または数週間かかります。

△人間が設計したチップとAIが設計したチップの平面図(灰色のブロックはマクロブロック)

レイアウト全体を完成させるには、数週間から数か月かかることもあります。

現在、Google の研究者は、一般化できるチップレイアウト方法を提案しています。

深層強化学習に基づいて以前のレイアウトを学習し、新しいデザインを生成することができます。全体的なアーキテクチャは次のとおりです。

AIモデルは10万個のチップレイアウトを学習する必要があるため、速度を確保するために、研究者らは、配線の長さと配線の混雑度のおおよそのコスト関数に基づいて計算される報酬メカニズムを設計しました。

具体的には、マクロと標準セルをフラットなキャンバスにマッピングして、数百万から数十億のノードを持つ「チップ ネットリスト」を形成する必要があります。

次に、AI モデルは電力、パフォーマンス、面積 (PPA) などの要素を最適化し、確率分布を出力します。

次の図は、事前トレーニング戦略に基づくゼロサンプル生成と微調整の効果を示しています。各小さな四角形はマクロブロックを表しています。事前トレーニング戦略では、標準ユニットを配置するためのスペースが中央に残されています。

Google の新しいアプローチでは、他の方法と比較して設計時間が大幅に短縮され、パフォーマンスが最適化されたレイアウトを実現するのに6 時間もかかりません

Google: 効果は良好で使用済み

研究チームは、さまざまな戦略におけるレイアウト効果を視覚化しました。図から、事前トレーニング戦略を微調整した結果が、ゼロサンプル生成よりも大幅に優れていることがわかります。

さらに、異なるトレーニング期間の効果を比較すると、 2〜12時間のトレーニングの場合、事前トレーニング戦略はゼロサンプル生成よりも優れていることがわかります。

研究者たちは、さまざまなサイズのデータ​​セットでテストを行った結果、データセットのサイズが大きくなるにつれて、生成されるレイアウトの品質と収束時間の結果が向上することを発見しました。

グーグルはこう言った。

このアプローチは、あらゆるタイプのチップに適用できます。

現在、次世代の Google TPU(アクセラレータ チップ)の製造に使用されています。

<<:  業界アプリケーション: ドローンに正確な測位技術を提供するにはどうすればよいでしょうか?

>>:  ヘルスケアにおける人工知能の応用

推薦する

西側メディア:将来の兵士はロボットの「羊飼い」になる

Reference News Networkは1月4日、スペインの新聞Vanguardiaが2020...

...

...

公共の場での顔認識は全面的に禁止される可能性があります。ちょうど今、欧州議会はAI規制を強化することを決定した

[[427521]]昨日、欧州議会はAI生体認証技術に基づく大規模な監視の全面禁止を求める決議を可決...

人間は知能を持っているのに、なぜモノのインターネットには人工知能が必要なのでしょうか?

IoT にインテリジェンスが必要なのはなぜですか?人工知能は登場しましたが、具体的な概念はなく、ま...

...

AIの大覚醒:チューリング賞受賞者のベンジオ氏は、AIは意識を持ち、将来の機械学習の核となるのは注意メカニズムであると語る

人工知能は意識を発達させることができるか?これはアメリカのテレビシリーズ「ウエストワールド」で取り上...

トランスフォーマーに挑むマンバの起源とは?著者の博士論文はSSMの進化の道筋を明らかにしている

大型模型の分野では、トランスフォーマーが全容を一手に引き受けています。しかし、モデルのサイズが拡大し...

...

業界初のNLPシナリオ向けディープラーニングフレームワークがオープンソースに

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

人工知能に基づく顔認識技術と評価システムの研究

[[428633]] 0 はじめに人工知能と光学画像デバイスの急速な発展に伴い、高度なハードウェア基...

ディープラーニングの仕組み: 今日の AI を支えるニューラル ネットワークの内部を覗いてみよう

[[428985]] [51CTO.com クイック翻訳]今日の人工知能の繁栄は、人工ニューラルネッ...

天才か愚か者か: 史上最も物議を醸したニューラル ネットワーク

エクストリームラーニングマシンExtreme Learning Machine は、これまでで最も賢...

...

カリフォルニア大学の中国の博士研究チームは、リアルタイムの「思考から音声への変換」で鳥の鳴き声を真似るAIを訓練した。

現在の最先端の音声変換システムは、「考える」から「話す」へと進む人間の自然なプロセスと比較すると遅い...