北京大学の研究者らは、今回AIが「平らになる」理由を発見した。それはすべてデータセットのせいだ

北京大学の研究者らは、今回AIが「平らになる」理由を発見した。それはすべてデータセットのせいだ

人工知能をトレーニングする場合、AI は人間のタスクを完了するための不可解な方法を学習してしまうことがよくあります。

[[404521]]

一部の AI は、「バグ」によってレベルを素早く通過する方法を学習します。

[[404522]]

一部の AI は、「ゲームを一時停止している限り、負けることはない」という究極の哲学を学習しました。

AIも「横になりたい」

モデルの精度を向上させるために、通常は対応する報酬が設定されますが、モデルが初期段階で報酬を得るための「近道」を見つけることもあります。

AI は一度成功を味わうと、常にこの「近道」を選択するようになり、より難しい知識や方法を学習しなくなります。

北京大学の研究者らは、言語モデルをトレーニングする際に、AIは正しい答えを出すことはできるものの、なぜその答えが正しいのかは理解できないことを発見した。AIが知っているのは、特定の種類の質問に遭遇したときにこの答えを使用できるということだけだ。

そのため、研究者たちは AI を「支援」し、AI が怠けることなく「一生懸命勉強」できるようにしようと決めました。

論文の宛先:
出典:http://arxiv.org/pdf/2106.01024.pdf

この論文はarXivで公開されました。著者は北京大学王軒コンピューター研究所および北京大学教育部計算言語学重点実験室のYuxuan Lai、Chen Zhang、Yansong Feng、Quzhe Huang、Dongyan Zhaoです。

AI はなぜいつも「横になりたがる」のでしょうか?

いくつかの研究では、AI は常に「横になる」ことを好むことが判明しましたが、この現象がデータセット内の「近道」の問題に関連していることは判明しませんでした。

この目的のために、この論文では、質問に対する 2 つの回答、「ショートカット バージョン」と「チャレンジ バージョン」を含む新しい注釈付きデータセットを提案しています。

学習した知識を表現するには意味の理解が必要であるため、データセットでは、より複雑で詳細な回答の基準として「言い換え」を使用します。対照的に、「ショートカット」の回答は、日付やその他のキーワードなどに基づいて生成されますが、コンテキストや理由は考慮されません。

研究者らは、トレーニング セット内の「ショートカット」サンプルの数が多くなるほど、モデルが「解釈」を学習し、困難な問題を解決するのが妨げられることを発見しました。 「ショートカット版」の質問に答える際のモデルのパフォーマンスは基本的に安定しています。

記事では、トレーニング セットに十分な数の「チャレンジ バージョン」の質問がある場合、モデルは「チャレンジ バージョン」の質問をよりよく理解できるだけでなく、「ショートカット バージョン」の質問にも正しく答えることができることが示されています。

AIはどうやって「横になる」ことを学んだのでしょうか?

記事によると、トレーニングの初期段階では、モデルはトレーニング データに適合する勾配降下法を実現する最も簡単な方法を見つける傾向があるとのことです。また、「ショートカット」は学習に必要な計算リソースが少ないため、これらのトリックを適合させることが優先されます。

その後、モデルはトレーニングの質問のほとんどに正しく回答するために使用できるショートカットを学習しているため、残りの質問では、質問の「チャレンジ バージョン」で必要な複雑なソリューションをモデルが引き続き探索する動機にはなりません。

AIを「支援」する方法はあるのでしょうか?

これは、NLP アーキテクチャ自体の問題に加えて、トレーニング中の標準的な最適化とリソースの節約、および限られたリソースで短期間にモデルに結果を出させるプレッシャーの結果である可能性もあります。

記事が示唆しているように、データ前処理の分野では、データ内の「ショートカット」を解決すべき問題として考慮したり、より困難なデータを優先するように NLP アーキテクチャを変更したりする必要があるかもしれません。

<<:  Go 言語アルゴリズムの美しさ - 基本的なソート

>>:  インテリジェントプロセスオートメーションについて知っておくべきこと

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

5G + AI の統合開発は、インダストリアル インターネットにどのように役立ちますか?

2021年、デジタル経済の重要な一部である産業インターネットが再び政策の焦点となりました。中国工業...

AI | 人工知能プロジェクトを成功させるための 8 つの重要な役割

企業が AI プロジェクトをさらに展開するにつれて、特定の役割がビジネスの成功に不可欠であることがわ...

スマートオフィス管理におけるAIの役割

スマート オフィスの概念は新しいものではありませんが、企業のオーナーや管理者が自動化の生産性の価値を...

ChatGPT の残念な欠点 10 選: チャットボットの限界を探る

ChatGPT は、翻訳、作詞作曲、リサーチ、コーディングなど、さまざまなスキルに優れています。しか...

AIの限界を理解することがその可能性を実現する鍵となる

人工知能は多くの業界のワークフローを変革しました。デジタル顧客サービスアシスタント、自動運転車、無人...

...

知らないうちに個人のプライバシーを人工知能に「提供」しないでください

[[260334]] BBCによると、IBMは最近、顔認識アルゴリズムの訓練のため、ユーザーの同意を...

危険すぎる。Google は過去 12 年間、いまだにこれを公表しようとしない。

ボビー・アリン編纂者 | Yan Zheng幸いなことに、Google はこの技術を公開しませんでし...

デジタルマーケティングにおける人工知能の台頭

1. パーソナライズされたマーケティング:ユニークなデジタルストーリーの作成先進的なデジタル マーケ...

...

COVID-19 最新情報: COVID-19 との戦いに役立つトップ 10 のイノベーション

[[320870]]迅速な感染検査から3Dプリントソリューションまで、世界中のテクノロジー企業が協力...

...

AIに「子犬」を認識させますか? Facebookは変化を感知できるAIを構築

[[389144]]今まで見たことのない犬種や色であっても、私たちは一目見てその犬を認識することがで...

うつ病で人生が押​​しつぶされたとき、AIを使ってうつ病を診断することで、どん底を味わう人々を救えるのでしょうか?

韓国のお笑いタレント、パク・チソンさんとその母親が自宅で死亡しているのが発見されたが、これはうつ病が...