AV-TESTに再び認定されました! Sangfor EDRは中国で初めて満点を獲得したエンタープライズレベルのエンドポイントセキュリティ製品となる

AV-TESTに再び認定されました! Sangfor EDRは中国で初めて満点を獲得したエンタープライズレベルのエンドポイントセキュリティ製品となる

検出能力6点!

パフォーマンス消費6ポイント!

使いやすさ6点!

先日、国際的に権威のある評価機関 AV-TEST が最新のエンタープライズ セキュリティ製品の評価結果を発表しました。評価された 19 のエンタープライズ レベルの端末セキュリティ製品の中で、 Sangfor EDR は検出能力、パフォーマンス消費、可用性の 3 つの評価軸で満点 (6 点が満点) を獲得しました。これは中国で満点を獲得した最初の端末セキュリティ製品でもあり、 Sangfor EDR が端末セキュリティ保護機能に対して専門家の承認と認知を得たことを意味します。

AV-Testからのデータ

AV-Test は、世界で最も権威のある第三者テスト機関の 1 つです。膨大なウイルス データベース検出、独立した客観的なテスト プロセス、厳格な基準で知られています。業界からは、世界クラスの端末セキュリティ製品のウイルス対策機能を比較するプラットフォームとして認められています。 AV-Test テストは 2 か月ごとに実施され、最新かつ最も人気のあるマルウェアを選択し、最新のセキュリティ脅威に対するさまざまなセキュリティ ベンダーの保護機能をテストしていると理解されています。

それで、Sangfor EDR が満点を獲得するために頼った機能は何でしょうか?

マルチエンジンファネル検出、高速検出速度、低パフォーマンス消費

1つ目は検出速度です。

従来のウイルス検出は、静的な特徴分析とルールのマッチングに基づいています。ウイルスの数と亜種が増えるにつれて、対応するルールライブラリのリソースが大きくなり、パフォーマンスの消費量が多くなり、検出速度が遅くなります。

Sangfor EDR は、ファイル レピュテーション検出エンジン、遺伝子機能検出エンジン、SAVE セキュリティ インテリジェンス検出エンジン、動作エンジン、クラウド チェック エンジンなどのエンジンを介してフィルタリングするマルチエンジン ファンネル検出メカニズムを採用しています。すべてのエンジンを同時に検出する必要がなく、検出速度が速く、パフォーマンス消費量が低くなっています。

マルチエンジンファネル検出フレームワーク

人工知能SAVEエンジン+IOA行動解析エンジン、検出率100%

2つ目は検出能力です。

AV-Testの最新の評価結果では、同機関は1万以上の一般的なウイルスサンプルをテストしました。テスト結果によると、Sangfor EDRの検​​出率は最大100%で、1台のマシンで脅威を検出し、ネットワーク全体で脅威を感知できるため、ユーザーのビジネスへの影響が大幅に軽減されました。

このような輝かしい成果は、Sangfor の EDR 人工知能 SAVE エンジンと IOA 動作分析検出エンジン技術の二重サポートによるものです。

ファイルレス攻撃、メモリ攻撃、暗号化トラフィック攻撃、ホワイトアプリケーションブラックエクスプロイト(Living Off The Land)が大きな脅威となるにつれ、従来の技術的手段では高度な脅威攻撃や未知の脅威攻撃に対処できなくなります。

未知の脅威攻撃に対応するため、Sangfor の EDR 人工知能 SAVE エンジンは、ディープラーニング技術を使用して、セキュリティ専門家のドメイン知識と組み合わせた何億もの次元の生の特徴を分析および合成し、最終的に強力な一般化機能を使用して、悪意のあるファイルの識別に最も効果的な高次元の特徴を数千個選択します。

ファイルレス攻撃などの高度な脅威をターゲットとするために、Sangfor EDR が独自に開発した IOA 動作分析検出エンジンは、動的な動作の複雑な関連ルールのマッチング アルゴリズムと高品質の IOA ナレッジ ベースに基づいており、単一プロセス、プロセス間、ホスト間のフルレベルの高度な脅威攻撃動作検出機能を実現します。

人工知能SAVEエンジン検出原理

一般的に、Sangfor EDR は、マルチエンジン ファンネル型検出メカニズムを利用することで検出速度を加速し、パフォーマンス消費を削減します。また、人工知能 SAVE エンジンを通じて一般化機能を強化し、IOA 動作分析検出エンジンを組み合わせることで検出精度を向上させ、エンタープライズ レベルのユーザーに高速かつリアルタイムの端末セキュリティ保護機能を提供します。

<<:  なぜ医療においてAIを信頼できないのか?データセットが小さく信頼性が低いため、AI医療にはまだまだ課題がある

>>:  人工知能技術の出発点と終着点

ブログ    

推薦する

Google の優れた NLP 事前トレーニング モデルはオープンソースで、BERT に勝る

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

ロボットが自律的に人間を助けるというアイデアはもはや手の届かないものではない

サイエンスフィクションネットワーク、11月18日(朱熹偉)技術の発展に伴い、さまざまな形や大きさのロ...

フェデレーテッドラーニングも安全ではないのでしょうか? Nvidiaの研究は「プライバシーフリー」データを使用して元の画像を直接再構築します

フェデレーテッド ラーニングは、データがローカルの場所から出ないようにするプライバシー保護戦略により...

彼らはAIを使って時の塵を拭い去り、半世紀前のアジア競技大会で中国が初めて金メダルを獲得した時の記憶を再現した。

杭州アジア競技大会初の金メダルが誕生した。女子軽量級ダブルスカルボート決勝では、中国の鄒佳琦選手と邱...

...

VB.NET コーディングアルゴリズム学習ノート

この記事では、VB.NET コーディング アルゴリズムを紹介します。おそらく、まだ多くの人が VB....

CNNの簡単な分析と、長年にわたるImageNetチャンピオンモデルの分析

[[189678]]今日は、ディープラーニングにおける畳み込みニューラル ネットワークのいくつかの原...

Galaxy Water Dropsが中関村フロンティアコンテストの人工知能分野でトップ10入りを果たす

10月21日、2020年全国大衆起業・イノベーション週間の北京会場である2020年中関村国際フロンテ...

教師あり学習の一般的なアルゴリズムは何ですか?どのように適用されますか?

教師あり学習とは何ですか?教師あり学習は機械学習のサブセットであり、機械学習モデルの入力データにラベ...

機械学習が物流、輸送、旅行を変革

スイスはアルプス山脈の高速道路で何万台もの貨物トラックによる渋滞と汚染に直面したため、世界最長かつ最...

産業用AIが製造業に革命を起こす5つの方法

人工知能 (AI) は、製造業において総合設備効率 (OEE) と生産時の初回歩留まりを向上させるた...

2021年のAIに関する10の大胆な予測の科学的分析 学術見出し

2020年は忘れられない年です。今年に入って、新型コロナウイルスの感染拡大に伴い、人工知能(AI)が...

顔認識は簡単すぎる、AIは指の動きも認識できる、これは非常に恐ろしい

現代のコンピューター ビジョン テクノロジーは、これまで映画でしか見たことのないようなテクノロジーの...