再トレーニングなしでモデルを6倍圧縮:数学者チームが新しい量子化法を提案

再トレーニングなしでモデルを6倍圧縮:数学者チームが新しい量子化法を提案

RUDN大学の数学者チームは、再トレーニングに余分なリソースを費やすことなく、ニューラルネットワークのサイズを6分の1に縮小できる新しい方法を発見しました。

ニューラル ネットワークの圧縮とは、ニューラル ネットワークのパフォーマンスに大きな影響を与えずに、適切な方法によってネットワークのパラメーターとストレージ スペースを削減することを指します。これは、近似、量子化、およびプルーニングの 3 つのカテゴリに大別できます。

ロシア人民友好大学(RUDN)の数学者チームは、再トレーニングに追加のリソースを費やすことなく、トレーニング済みのニューラルネットワークのサイズを6分の1に縮小する方法を発見した。この方法は、初期システムとその簡略化されたバージョンにおけるニューラル接続の重み間の相関関係を見つけることに基づいています。この研究の結果は「Optical Memory and Neural Networks」誌に掲載されました。

人工ニューラルネットワークと生体内のニューロンの構造は同じ原理に基づいています。ネットワーク内のノードは相互接続されており、一部のノードは信号を受信し、一部のノードはチェーン内の次の要素をアクティブ化または抑制することによって信号を送信します。画像や音声などの信号を処理するには、多くのネットワーク要素とそれらの間の接続が必要です。ただし、コンピュータ モデルにはモデル容量とストレージ スペースが限られています。大量のデータを処理するために、この分野の研究者は、いわゆる量子化を含む、モデルのパワーに対する要求を軽減するさまざまな方法を発明する必要がありました。これにより、リソースの消費量は削減されますが、システムの再トレーニングが必要になります。 RUDN 大学の一部の数学者は、後者は回避できることを発見しました。

「数年前、私たちはホップフィールド ネットワークで効果的かつコスト効率の高い重み量子化を実行しました。これは、ヘブの規則に従って形成された要素間の対称的な接続を持つ連想記憶ネットワークです。動作中、ネットワークのアクティビティは特定の平衡状態にまで低下し、この状態に達するとタスクは解決されたとみなされます。この研究で得られた洞察は、後に、今日の画像認識で非常に人気のあるフィードフォワード ディープラーニング ネットワークに適用されました。通常、これらのネットワークは量子化後に再トレーニングする必要がありますが、私たちは再トレーニングを回避する方法を見つけました」と、RUDN 大学のニコルスキー数学研究所の助教授である Iakov Karandashev 博士は述べています。

人工ニューラル ネットワークを簡素化する主な考え方は、重みあたりのビット数を削減するという、いわゆる重み量子化です。量子化は信号の平均化を提供します。たとえば、これを画像に適用すると、同じ色の異なる色合いを表すすべてのピクセルが同一になります。数学的には、これは、特定のパラメータを持つ類似の神経接続は同じ重み (または重要度) を持ち、同じ数値で表される必要があることを意味します。

RUDN大学の数学者チームが計算を行い、量子化の前後のニューラル ネットワークの重み間の相関関係を効果的に確立する数式を作成しました。これを基に、科学者たちは訓練されたニューラルネットワークが画像を分類できるアルゴリズムを開発しました。この研究の実験では、数学者らは1,000のグループに分けられる50,000枚の写真を含むデータセットを使用した。トレーニング後、ネットワークは新しい方法を使用して量子化され、再トレーニングは行われません。次に、この研究では実験結果を他の量子化アルゴリズムと比較しました。

RUDN 大学の Iakov Karandashev 氏は次のように付け加えています。「量子化後、分類精度はわずか 1% 低下しましたが、必要なストレージ容量は 6 分の 1 に削減されました。実験では、初期重みと量子化された重みの間に強い相関関係があるため、ネットワークを再トレーニングする必要がないことが示されました。このアプローチは、時間に敏感なタスクを完了する場合や、モバイル デバイスでタスクを実行する場合にリソースを節約するのに役立ちます。」

<<:  教師なしトレーニング用のスタック型オートエンコーダは時代遅れですか? ML博士が8つのオートエンコーダを比較

>>:  90年代のアンティークコンピューターでCNNをトレーニングしました

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

ビジョンから現実へ: ヘルスケアにおける AI の台頭

[51CTO.com速訳]人工知能分野における音声インタラクション、コンピュータビジョン、認知コンピ...

...

2022 年のビジネス インテリジェンス トレンド予測

調査では、テクノロジー主導の業界を推進する 2022 年までのビジネス インテリジェンスの主要なトレ...

顔認識技術の応用の安全管理に関する規定(試行)コメント:1万人以上の顔情報の保管は中国サイバースペース管理局に登録する必要がある

8月8日、IT Homeは中国サイバースペース事務局から、顔認識技術の応用を標準化するため、「中華人...

VB.NET コーディングアルゴリズム学習ノート

この記事では、VB.NET コーディング アルゴリズムを紹介します。おそらく、まだ多くの人が VB....

...

...

人工知能の登場で、自動化は恐怖に震えるべきでしょうか?

歴史は、人々に気づかれずに何度も同じ冗談を繰り返す、昔のいたずらっ子のようなものです。歴史は単なるジ...

プレミアリーグファンに朗報:AIはチームの勝率とゴール時間を予測できるのか?

[[423663]] 2021-22シーズンのイングランド・プレミアリーグが開幕し、初日にアーセナ...

...

ICCV'23論文表彰式は「神々の戦い」! Meta Split EverythingとControlNetが両方とも選出され、審査員を驚かせた記事がもう一つありました

たった今、コンピュータービジョンの最高峰カンファレンスである ICCV 2023 がフランスのパリで...

自然言語処理の応用展望

自然言語処理 (NLP) の定義自然言語処理(NLP)は、コンピューターが人間と同じように言語を理解...

AIが書いたコンテンツは判別が難しく、言語の専門家でさえ無力である

9月10日のニュース、2023年は人工知能の年です。チャットボットChatGPTから、グラミー賞に参...