機械学習を活用して産業オペレーションにおける運用リスクを管理する

機械学習を活用して産業オペレーションにおける運用リスクを管理する

センサーデータは、産業オペレーションにおける運用の安全性と効率性を確保する上で重要な役割を果たします。センサーは、温度、圧力、流量、振動などのパラメータを測定するために産業環境で広く使用されています。これらのセンサーから得られるデータは、施設資産の物理的状態に関する重要な情報をオペレーターに提供します。

[[359229]]

モノのインターネットと自動化の成長により、センサーの採用が広がっています。 Global Market Insights の最近のレポートでは、産業用センサー市場は 2026 年までに 7% 成長し、出荷数は 30 億個に達すると予測されています。

「石油・ガス、製造、エネルギー・電力、ヘルスケアなど、さまざまな産業分野でセンサーの需要が高まっており、それが産業用センサー業界の需要を牽引するでしょう。例えば、スマートグリッドの効率向上を目的とした電力分野でのセンサーの採用増加は、市場の成長にプラスの影響を与えるでしょう。」

しかし、この幅広い採用には独自の課題が伴います。センサーの数が増えると、受信データをリアルタイムで監視するタスクはより複雑になり、人為的エラーが発生しやすくなります。さらに、センサーの障害による微妙なデータ異常(キャリブレーションエラー、測定ドリフト、詰まり/汚れなど)は、インシデントが発生するまで人間の目には気づかれないことがよくあります。これらのイベントが直ちにリスクをもたらさない場合でも、入力データの品質が大幅に低下し、資産の状態の長期的な状況が変化する可能性があります。データ品質が低いと、データ分析や予測メンテナンスの取り組みに大混乱が生じる可能性があります。

企業は、機械学習を使用してこの問題をスケーラブルに解決する方法を理解し始めています。 ML は、医療診断や詐欺防止などの他の状況でも、人間よりも高い精度で大規模なデータセット内の異常なパターンを検出するために使用されています。したがって、同様のアプローチを使用して、手動分析の負担を軽減し、産業用アプリケーションにおける人為的エラーの範囲を減らすこともできます。

過去数年間、このアプローチの応用は、石油・ガス、発電、化学部門でのパイロットおよび本格的な導入を通じて、特にヨーロッパと中東で飛躍的に増加しました。

機械学習は、産業用センサーからのリアルタイム監視とデータ品質の長期的な低下の両方に対処する上で、ますます重要な役割を果たすようになります。このアプローチは将来さらに広く採用されるようになると予想されており、私たちはその成長に大きく貢献できることを期待しています。

<<:  Google:MLの発展を牽引する転移学習とは何でしょうか?丨NeurIPS 2020

>>:  人工知能(AI)が商業ビルのアプリケーションで成功を収める

ブログ    
ブログ    
ブログ    

推薦する

...

AIロボットの出現により、運転訓練業界における知能の新たな章が開かれた。

近年、都市化と道路交通建設の加速により、自動車旅行の需要が継続的に増加しており、道路上の車両数の継続...

...

北本重型トラック、易欧、松山湖材料研究所が「易本デュアルカーボン研究所」設立に向けた戦略協力協定を締結

8月4日、中国北方工業集団公司、北奔重型トラック集団有限公司、渤海、松山湖材料研究所は調印式を開催し...

製造業に人工知能を適用するにはどうすればよいでしょうか?

現在、製造企業で使用されている人工知能技術は、主にインテリジェント音声対話製品、顔認識、画像認識、画...

Appleは人工知能の分野で追い上げており、その視覚認識の成果は業界の賞を受賞した

[[201426]]歴史的に、Apple は最先端技術の研究にはあまり注意を払わず、むしろ製品の設計...

機械学習の4つの異なるカテゴリの概要

[[420892]]学習の実行方法に基づいて、アルゴリズムをさまざまなカテゴリに分類できます。教師あ...

[探索] 機械学習モデルのトレーニングをサポートする 8 つの JavaScript フレームワーク

[[221813]] [51CTO.com クイック翻訳] JavaScript 開発者は、さまざま...

AIビデオ分析が業務を強化できる4つの方法

私たちが知っている食品の消費とレストラン体験の変革は、1921 年にカンザス州ウィチタでアメリカ初の...

...

ブースティングとバギング: 堅牢な機械学習アルゴリズムを開発する方法

導入機械学習とデータ サイエンスでは、単にデータを Python ライブラリに投入してその結果を活用...

Python の高度なアルゴリズムとデータ構造: コレクションの高速クエリとマージ

コード設計では、このようなシナリオによく直面します。2 つの要素が与えられた場合、それらが同じセット...

強化学習と世界モデルにおける因果推論

1. 世界モデル「世界モデル」という用語は認知科学に由来しており、認知科学ではメンタルモデルと呼ばれ...

目に見える機械学習: ニューラルネットワークをゼロから理解する

機械学習に関する古いジョークがあります。機械学習は高校のセックスのようなものです。誰もがやっていると...

プライベートUNIT学習ノート - 対話システムの構築を簡単に始めることができます

対話システムの構築は比較的専門的で複雑なプロセスであり、通常は 3 つの主要な段階に分かれています。...