AIを活用した臨床モニタリングシステムの台頭

AIを活用した臨床モニタリングシステムの台頭

[[355709]]

現在、医療システムもさまざまな方法で人工知能の利点を取り入れています。

人工知能(AI)は生活のあらゆる分野に浸透しています。モバイル アプリと IoT デバイスの登場により、AI はこれまでにないほどデータの格差を解消するのに役立っています。現在、医療システムもさまざまな方法で人工知能の利点を取り入れています。

F&S の専門家は、患者のモニタリングがアドホック モニタリングからさまざまなパラメータの継続的なモニタリングへと進化し、その結果、臨床医が意思決定に利用できる未処理で整理されていない情報の量が急増していると指摘しました。 「このデータから得られる注目すべき洞察を活用するために、医療提供者はビッグデータ分析やその他の分析ソリューションを採用するでしょう。

パンデミックが発生すると、医療機関は直ちに COVID-19 に関する最新情報を臨床監視活動に組み込みました。

COVID-19 の症例を一元的にグローバルに把握し、リアルタイムのアラートと組み合わせることで、診療所や医療システムは、患者の状態を積極的に監視して事前に介入し、有益な方法でデータフローを拡張することを選択できます。

たとえば、追跡される主要な患者の特徴には、年齢、感染が発生した可能性のある場所(患者が検査を受けたかどうかに関係なく)、患者が ICU に滞在した期間などがあります。

高度な臨床モニタリングおよびコンプライアンス分析システムとして、病院は高度なモニタリングおよびコンプライアンス分析システムを備える必要があります。たとえば、入院患者の場合、敗血症やその他の医療関連感染症 (HAI) を検出し、監視する上で監視が重要な役割を果たします。

監視システムに AI を組み込むことで、医療システムはより正確かつ容易に、より広範囲の深刻な慢性疾患を積極的に特定できるようになります。これにより、病院や地域社会は、クラスター、アウトブレイク、または深刻な医療上の緊急事態が発生する前に行動を起こすことができます。主な懸念事項は、AI 制御の臨床監視によって、予防不可能と判明した病気による人命と費用を節約できる可能性があるほか、後に疫病やパンデミックにつながる可能性のある予防可能な感染症を特定できる可能性があるという点です。

たとえば、モニタリングでは、患者が以前に血液凝固の問題を抱えていたかどうかを考慮に入れることができます。この情報トラッカーは、プロバイダーが継続的な Covid プロファイルを構築し、州政府や地方自治体、公衆衛生機関に対応するための重要な情報ポイントを提供するのに役立ちます。

明らかに別個のデータをつなぎ合わせる他の方法がないため、臨床監視では現在、患者データ、併存疾患、死亡率、投薬など、診療所や病院のさまざまな部分からのデータを統合して、COVIDケアの包括的なビューを作成しています。

イノベーションの受け入れには時間がかかることが多いものの、多くの医療制度は、COVID-19の事例を踏まえ、感染に伴う呼吸器や臓器不全をより適切に予測できるようにすでに変化しています。さらに、COVID-19は敗血症を発症するリスクを高めるため、最もリスクの高い人々に警告を発することも望んでいました。これは、人工知能 (AI) を活用したいくつかの最適化ツールを使って試験的に導入されました。この健康危機により、多くの慢性的な健康問題を予測し、予防できるという認識が生まれました。

これらの節約を実現するには、1) 臨床モニタリングにおける AI の使用を改善すること、2) 電子健康記録 (EHR) から、直接の臨床現場以外の情報、経済から福祉の社会的決定要因に至るまで、あらゆる情報へのアクセスを増やすこと、3) 特定の臨床問題に対する実証済みで実用的な洞察を提供するソリューションから AI の推進を実現することが必要です。

その大きな価値にもかかわらず、AI を活用した臨床サポート ツールの必然的かつ実行可能な導入には障壁が残っています。多くの臨床医は、データへの不信感や業務プロセスへの影響の可能性を懸念し、患者の治療における AI の妥当性について慎重です。患者はまた、AI の使用に不信感を抱いており、AI ツールを使用して自分の病気を診断および治療することによる潜在的な安全性の問題を懸念しています。救急診療所や医療システムは、AI の使用に関して臨床医や患者との信頼関係を構築し、AI が効率性を達成し、成果と患者体験を向上させる能力があることを実証する必要があります。

<<:  AIを活用した臨床モニタリングシステムの台頭

>>:  人工知能の役割がクローズアップ!ロボットが増えると雇用に影響が出るでしょうか?

ブログ    
ブログ    

推薦する

人工知能は議論の的になっています。それは人類にとって利益となるのでしょうか、それとも脅威となるのでしょうか?

人工知能はここ2年で急速に発展し、狂気のレベルにまで達しました。例えば、ロボットは人間社会の「市民」...

なぜ一部の数学研究者はディープラーニングを嫌ったり軽蔑したりするのでしょうか?

[[190844]] DL の難しさは、問題をどのような視点から見るかによって決まります。数学を勉...

2025年までにロボットが8000万人の労働者に取って代わるのでしょうか?職を失った人はどうすればいいのでしょうか?

同紙によると、世界経済フォーラムがロボット革命に関する報告書を発表し、世界的な警戒を呼び起こした。同...

巨大企業の障壁の中で、人工知能のサブセクターでリーダーが出現している。これはAIにとって真の新しいチャンスである。

ディープラーニングと機械学習を中核とするAI技術は、主にコンピューティング能力とアルゴリズムのブレー...

...

Llama 2 の精度を 80.3% まで高めるヒントは何でしょうか? Metaは、モデルの幻覚を大幅に削減する新しい注意メカニズムS2Aを提案している。

2023年の科学技術の世界は、(偽の室温超伝導を除いて)大型モデルが主流であると言えます。私たちは...

AIに人間のように計画を立てることを教えるにはどうすればよいでしょうか?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

RLHF にはもう人間は必要ありません! Googleチームの研究により、AIによる注釈が人間のレベルに達したことが証明される

たとえば、RLHF の「人間」が入れ替わった場合、それは実現可能でしょうか? Google チームの...

...

LLM収益化プラットフォームが登場! LangChain+DemoGPT 協力: アイデアがあればお金が稼げる、「プログラマーが足りない」時代は終わった

大規模な言語モデルのサポートにより、開発者は多くの新しい機能を実装し、より幅広いアプリケーション シ...

AIoTは自律時代を推進します。人工知能はIoTインフラに新たな競争上の優位性をもたらします。

人工知能とモノのインターネット (AIoT) は、テクノロジー分野における新しいプレーヤーの 1 つ...

...

手書き認識のための単層基本ニューラルネットワーク

[[214992]]まず、コードテンソルフローをインポートする tensorflow.example...

...