リードし続けてください! Oracle Autonomous Databaseに会話型AI機能が追加

リードし続けてください! Oracle Autonomous Databaseに会話型AI機能が追加

編集者 | Yifeng

制作:51CTO テクノロジースタック(WeChat ID:blog)

Oracle は、クラウド データベース サービスにおけるリードを維持し、AWS、Google Cloud、IBM、Snowflake などの競合他社に先んじるために、Autonomous Database の提供を更新しました。 Oracle Autonomous Database は、Oracle Cloud Infrastructure (OCI) のサービスの一つです。これは、Oracle 独自のリレーショナル データベース管理システム (RDBMS) (現在のバージョンは Oracle Database 23c) に基づいており、トランザクションおよび分析ワークロードをサポートします。自律型データベースの鍵となるのは、その基盤となる管理システムが、手動による介入なしに、パッチ適用、アップグレード、チューニング、およびすべての日常的なデータベース保守タスクの処理を自動化することです。

Oracle Autonomous Database は、トランザクション処理、分析、データ ウェアハウス、JSON データのトランザクションと分析、APEX アプリケーション開発の 4 つの異なるワークロードをサポートします。その中でも、APEX は、データ駆動型モバイル アプリケーションを構築および展開するための、完全に管理されたローコード アプリケーション開発プラットフォームです。

アップデートには、Select AI の会話機能のサポート、Oracle Machine Learning の空間拡張機能、コード不要のモデル監視インタフェース、Autonomous Database の Graph Studio の新しいユーザーインタフェースが含まれます。

1. Select AIがダイアログサポートを追加

Oracle は Select AI にダイアログ サポートを追加しました。昨年 9 月にリリースされた Select AI により、企業ユーザーは自然言語インタラクションを使用してデータ分析を完了し、大規模言語モデル (LLM) の助けを借りて OCI の生成 AI 機能にアクセスできるようになります。

このアップデートの前は、Select AI は以前の質問を記憶できず、ユーザーが追加の質問をすることができませんでした。 「Select AI の過去のチャットログが LLM で利用できるようになりました。これにより、LLM はフォローアップの質問のコンテキストを理解できるようになりました。ユーザーはデータベースと『会話』して、必要な回答を取得して絞り込むことができるようになりました」と、オラクルの製品管理担当副社長、ジョージ・ランプキン氏はブログ投稿に書いています。

ランプキン氏は、ビジネス ユーザーは Select AI が生成する SQL とクエリ処理の説明を要求することもできると述べました。

調査・コンサルティング会社ISGのエグゼクティブディレクター、デビッド・メニンガー氏によると、Select AIの新機能は開発者の負担を軽減し、生産性を向上させるのに役立つとのことだ。

「以前のクエリの記録がなければ、企業の開発者は質問やリクエストを繰り返し、必要に応じて継続的に調整する必要があります。このプロセスはすぐにイライラするものになり、効率を高めたいという願望に反します」とメニンガー氏は述べ、アップデート前は、Select AI は自然言語入力から SQL クエリの基本構造しか生成できなかったと付け加えた。

dbInsight の主席アナリストである Tony Baer 氏は、このアップデートにより AI コーディング アシスタント、つまりコーディング用の AI システムが新たなレベルに引き上げられると考えています。 Baer 氏は、「コードを生成することに加えて、言語モデルはデータベースの論理構造と記述メタデータの非構造化テキストを『理解』する必要があります。クエリの最適化を深く理解する必要があります。」と述べています。

Oracle の Select AI は、Microsoft Copilot、Github Copilot、Amazon Q、Snowflake Copilot、Databricks IQ など、自然言語クエリ サービスを提供する製品の増加との競争に直面していますが、Baer 氏は、Select AI が他と異なるのは、一般的な Oracle Database 展開の非常に複雑なアーキテクチャを理解できる点だと考えています。

同社によれば、Select AI はあらゆる SQL アプリケーションにアクセスでき、Autonomous Database の統合機能としてユーザーに提供されるという。

2. コードフリーのモデル監視インターフェース

企業の従業員が機械学習操作 (MLOps) を処理できるように、Oracle は機械学習モデルを監視するための新しいコード不要のインターフェースも追加しました。

Oracle の Lumpkin 氏によると、新しいモデル監視インターフェースにより、ビジネス ユーザーはモデルを監視できるだけでなく、必要に応じて調整も行えるようになります。

「モデルのパフォーマンス向上は長年の取り組みであり、気候や天気のモデリング、公共の安全への対応の改善などの分野を含め、開発者にとって重要な優先事項です」と、フューチュラム・グループのリサーチディレクター、ロン・ウェストフォール氏は語った。

ウェストフォール氏はさらに、「新しい機能により、Oracle Autonomous Database はモデリング プロセスを簡素化し、競合他社に対して優位に立つことができます」と述べています。

さらに、同社はAutonomous Database製品の一部としてOracle Machine Learning for Pythonに新たな空間拡張機能を導入し、企業が機械学習モデルに位置関係を含めてモデルの精度を向上できるようにしました。

「データ サイエンティストは、データベースからデータを移動したり、複雑なアルゴリズムを自分で記述したりすることなく、空間クラスタリング、回帰、分類、異常検出などの定量的手法を通じて空間パターンを検出できます」とランプキン氏は書いています。

企業がデータからより多くの洞察を得られるよう、同社はAutonomous DatabaseのGraph Studioに新しいユーザー・インターフェースを追加しました。これにより、企業はドラッグ・アンド・ドロップ方式を使用して、リソース記述フレームワーク(RDF)ナレッジ・グラフ上にプロパティ・グラフ・ビューを作成できます。

「RDF ナレッジ グラフは、組織内のデータの複雑な関連性を捉えることで、データの関係に意味を与えることができます。企業はナレッジ グラフのデータからより多くの洞察を得ることができます」と Lumpkin 氏は書いています。

3. Oracle は競合他社より先を行っていますか?

ISGのエグゼクティブディレクターであるメニンガー氏は、データの管理、データからの洞察の生成、機械学習とAIを使用したアプリケーション開発の高速化に重点を置いたこれらのアップデートにより、オラクルは競争で優位に立つことができる可能性があると述べた。

「オラクルは何年も前にAutonomous Databaseを発表した際、説得力のある主張をしました。当時、オラクルの製品と哲学は時代を先取りしていたかもしれませんが、テクノロジーが進化するにつれて、より自動化された機能が現実のものとなりました。オラクルのこれまでの投資のおかげで、同社はAutonomous Database機能の提供において主導的な立場にあると言っても過言ではないと思います」とメニンガー氏は述べました。

メニンガー氏はさらに、管理や運営といった単調で退屈な作業を置き換える可能性のあるデータベースは、誰もこうした作業に時間を費やしたくないため、企業にとって魅力的であると述べた。同氏はさらにこう付け加えた。「機能が便利で価格が適切であれば、どんなビジネスにとっても価値のあるものになり得る。」

これらの機能とアップデートは、ソフトウェア プロバイダーがデータベース製品に AI ベースの機能を組み込むという現在のトレンドにも沿っています。そうすることで、企業ユーザーが AI または AI の生成機能を導入するためにデータを別のデータベースまたはデータ プラットフォームに移行する必要性が軽減されます。

市場調査会社ガートナーは報告書の中で、「データベース管理システム市場の次の衰退の波は、データエコシステムが総合的なデータプラットフォームになったときに起こるだろう」と述べた。

The Futurum Group のリサーチ ディレクターである Westfall 氏は、Select AI によって Oracle Autonomous Database がデータ プラットフォーム イノベーションの最前線に立つと考えています。

「Select AI により、オラクルは AI 分野の常識を打ち破り、組織が独自のプライベート データと文脈的に理解された対話を行える直感的な機能を提供しています。デモで見たように、使いやすいので、あらゆる規模の企業がすぐに使い始めることができます」とウェストフォール氏は述べています。

オリジナルリンク: https://www.infoworld.com/article/3712924/oracle-autonomous-database-adds-ai-conversation-support.html

<<:  Wi-Fi の AI がワイヤレス接続をどのように形作るか

>>: 

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

今年の英語大学入試では、CMUは再構成事前トレーニングを利用してGPT3をはるかに上回る134点という高得点を獲得した。

データの保存方法は、生物学的ニューラル ネットワークから人工ニューラル ネットワークへと変化しており...

AIが髪の毛に至るまで肖像画を生成!北京大学卒業生の最新研究が2.8千個の星を獲得

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

...

アルゴリズム問題演習 - 大規模ブラックリスト IP マッチング

多くの IT 企業では、アルゴリズムは面接で非常に重要な部分を占めていますが、実際の仕事でアルゴリズ...

Pythonの神のようなアルゴリズム

今日は、非常に有名な Python の簡潔で効率的かつ便利なコードを見てみましょう。そのスタイルを見...

建設業界はAIとIoTの次の大きなターゲット

建設業界は、革新、破壊、あるいは何と呼ぼうと、何らかの変化が起こりやすい時期にあります。以前にも書い...

...

ITとビジネスの調和を実現する: デジタル変革にローコードが不可欠な理由

[51CTO.com クイック翻訳]ビジネスの世界では、デジタルトランスフォーメーションという言葉を...

2021 年の AI イノベーション トレンド トップ 10

人工知能は、人々の日常の仕事や生活を変えるテクノロジーとイノベーションに関して、最もホットなトレンド...

世界人工知能会議の最高栄誉である2020年SAIL賞のトップ30プロジェクトが発表されました

世界人工知能会議の最高賞であるSAIL賞(スーパーAIリーダー)は、「卓越性を追求し、未来をリードす...

人力資源社会保障省:人工知能人材の不足は500万人を超える

最近、人力資源・社会保障省は、新しい職業である人工知能工学・技術人材の現在の雇用状況に関する分析レポ...

MIT は Google と提携して 7 台のマルチタスク ロボットをトレーニングし、9,600 のタスクで 89% の成功率を達成しました。

タスクの数が増えるにつれて、現在の計算方法を使用して汎用の日常的なロボットを構築するコストは法外なも...

言語モデルの氷山の一角: 微調整は不要、AI21 Labs は凍結モデルの未開発の可能性を探る

現在、特定の NLP タスクのパフォーマンスを最適化するための最善のアプローチは、事前トレーニング済...

Keras の重み制約を使用してディープ ニューラル ネットワークの過剰適合を減らす

[[333587]]重み制約は、ディープラーニング ニューラル ネットワーク モデルのトレーニング ...