貪欲アルゴリズム: K回の反転後の配列の合計を最大化する

貪欲アルゴリズム: K回の反転後の配列の合計を最大化する

[[355496]]

多くのレコーディング仲間が、昨日のトピック「貪欲アルゴリズム:ジャンピングゲーム II」は難しいと報告しています。これでほっとしました。笑。ちょうど貪欲を説明していたとき、何人かのレコーディング仲間が「貪欲を別途説明する必要はなく、動作ルールを直接説明すればいい」と提案してくれたからです。多くの学生は、それは単なる欲張りで、難しいことではないと感じるかもしれません。貪欲の原理は単純ですが、問題の解決方法は非常に巧妙で、難易度はルールとそれほど変わらないことがわかります。

今日は簡単な質問です。鍵となるのは、貪欲な問題解決の考え方を養うことです。

K 回の否定後の配列の合計を最大化し、問題のアドレス: https://leetcode-cn.com/problems/maximize-sum-of-array-after-k-negations/

整数の配列 A が与えられた場合、配列を変更する方法は次のとおりです。インデックス i を選択し、A[i] を -A[i] に置き換え、このプロセスを合計 K 回繰り返します。 (同じインデックス i を複数回選択できます。)

このように配列を変更すると、配列の最大可能合計が返されます。

例1: 入力: A = [4,2,3]、K = 1

出力: 5

説明: インデックス (1,) を選択すると、A は [4,-2,3] になります。

例2:

入力: A = [3,-1,0,2]、K = 3

出力: 6

説明: インデックス (1, 2, 2) を選択すると、A は [3,1,0,2] になります。

例3:

入力: A = [2,-3,-1,5,-4]、K = 2

出力: 13

説明: インデックス (1, 4) を選択すると、A は [2,3,-1,5,4] になります。

ヒント:

  • 1 <= A.長さ <= 10000
  • 1 <= K <= 10000
  • -100 <= A[i] <= 100

アイデア

この質問のアイデアは、実は非常に簡単に考えることができます。配列の合計を最大化するにはどうすればよいでしょうか?

貪欲な思考、局所最適性: 絶対値の大きい負の数を正の数に変換し、現在の値を最大化します。全体的な最適性: 配列全体の合計が最大に達します。

局所最適は全体最適につながる可能性があります。

したがって、すべての負の数を正の数に変換しても、K は依然として 0 より大きくなります。このときの問題は、正の整数の順序付けられたシーケンスであることです。正の数と負の数を K 回変換して、配列の合計を最大化する方法。

次に、別の貪欲なソリューションがあります。ローカル最適ソリューション: 反転する最小の正の整数のみを見つけて、現在の値が最大値に達するようにします (たとえば、正の整数配列 {5, 3, 1} では、1 を反転して -1 を取得することは、5 を反転して -5 を取得するよりもはるかに大きくなります)。グローバル最適ソリューション: 配列全体の合計が最大値に達します。

この問題を解くときに貪欲アルゴリズムについて考えないかもしれませんが、AC を 1 回で取得できます。

「実は、私は見落とされがちな貪欲な思考をお見せするためにここにいます。こんなに単純な問題に、貪欲な思考を 2 回も使いました!」

この問題を解決するための手順は次のとおりです。

  • ステップ 1: 配列を絶対値に従って最大から最小の順に並べ替えます。「絶対値に従って並べ替える必要があることに注意してください」
  • ステップ2: 前から後ろへ移動し、負の数に遭遇したら正の数に変換し、K--
  • ステップ3: Kがまだ0より大きい場合は、Kが使い果たされるまで、最小値を持つ要素を繰り返し変換します。
  • ステップ4: 合計

対応する C++ コードは次のとおりです。

  1. クラスソリューション{
  2. 静的ブールcmp( int a, int b) {
  3. 戻る 絶対値(a) >絶対値(b)
  4. }
  5. 公共
  6. int largestSumAfterKNegations(ベクトル< int >& A, int K) {
  7. sort( A.begin (), A.end ( ), cmp); // 最初のステップ
  8. for ( int i = 0; i < A.size ( ); i++) { // ステップ2
  9. もし (A[i] < 0 && K > 0) {
  10. A[i] * = -1;
  11. K --;  
  12. }
  13. }
  14. while (K --) A[A.size() - 1] *= -1; // ステップ3  
  15. int結果 = 0;
  16. for ( int a : A) result += a; // ステップ4
  17. 結果を返します
  18. }
  19. };

要約する

貪欲問題が単純化されると、人々は疑問を抱き始めます。「これはこのように行われるべきではないのか?これもアルゴリズムなのか?これは貪欲ではないと思う。」

この問題は実は非常に単純で、貪欲アルゴリズムを知らない人でも解くことができますが、ここでは貪欲アプローチを使用して全体を通して説明します。

欲深い考えは必ず存在するからです!

「貪欲な考え方(局所最適、大域最適)を持っていなければ、感情に基づいて単純な貪欲な質問をするという罠に陥りやすく、難しい貪欲な質問がまったくできなくなります。実際、これでは貪欲な考え方が訓練されません。」

したがって、たとえそれが貪欲な単純な質問だとわかっていても、それを解くには貪欲な思考に頼らなければなりません。これは問題解決の感覚を養うのに非常に役立ちます。

この記事はWeChatの公開アカウント「Code Thoughts」から転載したもので、以下のQRコードからフォローできます。この記事を転載する場合は、Code Thoughts の公開アカウントにご連絡ください。

<<:  AIチップと人工知能産業は密接に連携している

>>:  AIと機械理解の限界を打ち破り、オックスフォード大学のコンピューターサイエンス博士の143ページの論文は3Dオブジェクトの再構築とセグメント化を学ぶ

ブログ    
ブログ    
ブログ    

推薦する

...

推論効率は ControlNet の 20 倍以上です。 Google、モバイルデバイスで利用可能な画像生成制御モデル「MediaPipe Diffusion」プラグインをリリース

近年、拡散モデルはテキストから画像への生成において大きな成功を収め、画像生成品質の向上、推論パフォー...

人工知能の時代において、従来のメディアはどのようにしてニュースの取り組みを守ることができるのでしょうか?

海外メディアの報道によると、人工知能によるニュースのパーソナライゼーションの時代では、従来の報道機関...

必読 | AI 変革のための開発者ガイド

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

人工知能を始める、現実的な仕事の選び方は?

[[235638]]人工知能は、誰もが「データ サイエンティスト」になるという、2、3 年前のビッ...

人工知能は本当に万能なのでしょうか?

多くのセキュリティ業界の専門家は、過去 10 年間に登場した新しいテクノロジーを振り返り、将来のテク...

Pythonで完全な異常検出アルゴリズムをゼロから実装する

確率を用いた異常検出アルゴリズム異常検出は、外れ値分析の統計タスクとして扱うことができます。 しかし...

...

北京大学の具現化知能チームは、人間のニーズに合わせてロボットをより効率的にするための需要主導型ナビゲーションを提案した。

ロボットに手伝ってもらいたい場合は、通常、より正確な指示を与える必要がありますが、指示の実際の実装は...

...

...

新しいエッジAI手法であるTinyMLは、超低消費電力でエッジデバイス上で機械学習を実行します。

人工知能 (AI) はクラウドからエッジへと急速に移行しており、ますます小型の IoT デバイスに導...

...

AIの使用後、機械は人間の皮膚に匹敵する触覚を持つ丨科学サブジャーナル

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...