将来、人工知能は人間の意思決定に取って代わることができるでしょうか?

将来、人工知能は人間の意思決定に取って代わることができるでしょうか?

ほとんどの CIO は、AI に意思決定を任せることに消極的です。しかし、それは彼らがより優れた、より偏りのない製品を作るのに役立ちます。

[[350884]]

人工知能(AI)が自分たちの仕事を奪ってしまうのではないかと人々は長い間疑問に思ってきました。しかし、現時点では、ビジネス取引には依然として人間的要素が必要です。

数年前、あるヨーロッパの金融会社が自社のデータセンター内の災害復旧およびフェイルオーバー技術を更新していました。目標は、システム内の多数のアラートを自動化し、システムに障害が発生する前に IT 部門が早期に警告を受け取れるようにすることです。

このテクノロジーは非常にうまく機能するため、CIO は選択を迫られます。フェイルオーバーを完全に自動化し、必要に応じて、システムのフェイルオーバー機能を引き継ぐために自動化が必要かどうかを判断するのか、それとも、フェイルオーバーの「ラスト マイル」をそのままにしておくのか。つまり、ミッション クリティカルなシステムに障害が発生するという警告が出されたら、フェイルオーバーとリカバリを自分で開始する決定を下す必要があるのか​​、という選択です。誰がボタンを押すのですか?

「私はボタンを押す人間になりたいのです」と彼は言う。「AIエンジンに、避けられたはずのフェイルオーバーの決定をさせて、それを顧客や取締役会に説明しなければならないのは気が進みません。」

AIリスク管理が諸刃の剣である理由

CIO の決定は珍しいことではありません。ほとんどの CIO は、自動データ複製およびリカバリ ソフトウェアの利点を理解していますが、大規模な災害復旧やフェイルオーバーの決定を自動化ソフトウェアに任せることに不安を感じています。

同時に、CIO やビジネス リーダーは、AI がモノのインターネット (IoT) やその他の形式のビッグ データを通じて意思決定を促進する、有用かつ変革的なテクノロジになることを認識しています。

次の実際の例を考えてみましょう。

物流業者は、トラックの1台に積載されているコンテナの環境が基準を満たしていないとの警告を受けました。つまり、近くに市場が見つからない限り、そのコンテナで運ばれた農産物はすべて腐ってしまう危険があるということです。 AI が介入し、スカウトがルートを変更するための近くの市場をいくつか提案します。最終決定は専門家が行いますが、AI 意思決定エンジンにより貴重な時間を節約できます。

製造 4.0 の原則を実装している工場では、組立ラインの機器に、ラインを停止させる可能性のある差し迫った障害のリスクを示すセンサーが設置されています。ダウンタイムのリスクを回避するために、メーカーは技術者を生産​​ラインに派遣し、技術者が AI を使用して診断と修理を支援します。

建設会社はプロジェクトのために特別なクレーンを調達する必要があり、AI を使用して将来の悪天候のリスクとそのリスクまたは価格上昇を評価し、発注する適切な時期を決定します。

これらすべての例からわかることは、AI は重要な時間を節約する便利なツールではあるが、最終的には人間が最終決定を下したいと考えているということです。

人工知能は人間の意思決定に取って代わることができるでしょうか?

「今のところ、計画・実行・確認・改善のサイクルから人間を完全に排除することは考えられません」と、リスク管理会社ウォルターズ・クルーワーは製造業とリスクに関する議論の中で述べた。「たとえ認知コンピューティングが完全に発達したとしても、機械が完全に取って代わるというシナリオは、ほとんどの人にとって恐ろしい見通しとなるでしょう。」

機械による自動化と AI が意思決定と人間の専門知識の砦を完全に置き換えることができるようになるでしょうか?

人間、機械、そしてAI

「AIの能力は私たちを複製するのではなく、私たちを補完するだろう」とSAS UKおよびアイルランドのデータサイエンス責任者、イアン・ブラウン博士は語った。

リスク管理の観点から見ると、AI は人間の協力者が新しい方法でリスクを管理するのに役立ちます。 AIは大量の情報を素早く吸収し、消化することができます。 1,000 マイル離れた道路の閉鎖や天候の問題を物流ディスパッチャーに通知できます。これにより、配送担当者は出荷遅延のリスクを管理できるようになります。

同時に、人間は AI の誤った判断のリスクを管理するためのチェックポイントとして機能します。 「銀行は長い間、消費者にアドバイスを提供する際に個々の従業員が偏りを見せるのではないかと懸念してきた」と、著者らは最近のマッキンゼーのリスク管理論文に記している。「しかし、従業員がAIの推奨に基づいてアドバイスを提供する場合、リスクは個々の推奨が偏っていることではなく、AIの推奨が偏っている場合、金融機関が実際にその偏りを意思決定プロセスに体系化してしまうことである。」

AI を導入する企業にとって最も重要なことは、リスク管理と優れた意思決定を可能にするために、機械駆動型 AI と人間の間に適切なインターフェースを見つけることが不可欠であるということです。

これは、企業が取り組むあらゆる AI プロジェクトの目標となるはずです。

<<:  アルゴリズムだけでは不十分:AIの次のブレークスルーにはハードウェアの再検討が必要

>>:  顔認識アプリケーションの境界はどこにあるのでしょうか?

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

行列乗算の最適化と畳み込みにおけるその応用

導入天気予報、石油探査、原子物理学などの現代の科学技術は、主にコンピュータシミュレーションに依存して...

ジャック・マー:私は人工知能を恐れていない。今後30年間で私がやることは1つだけだ

[[223784]]ジャック・マー氏は以前、世界経済フォーラムでこう語った。「将来、多くの仕事が人工...

2019 年に人工知能がハイパフォーマンス コンピューティングに及ぼす 10 の影響

[[262566]]今日では、人工知能を使用するワークロードが普及しつつあり、その一部は世界最速のコ...

初心者向けガイド: 機械学習とディープラーニング

ウェッジ:機械学習とディープラーニングは現在注目されており、突然多くの人がそれについて話していること...

Nokelockの「1+2」戦略は、スマートロックを商業利用の新時代へと導きます

5月15日、世界有数のIoTロック企業であるnokelockの製品発表会が北京金宇シェラトンホテルで...

2021 年の人工知能のトップ 10 トレンド

コロナウイルスのパンデミック以前、AI業界は2020年に大きな成長を遂げると予想されていました。 2...

ラマ事件じゃないよ!李開復の大型モデルが貝殻論争に巻き込まれ、チームの2度目の反応がここに!

ノアとシャオウが編集制作:51CTO テクノロジースタック(WeChat ID:blog)昨日、テク...

Googleのジェフ・ディーンが単独著者として執筆: ディープラーニング研究の黄金の10年

コンピュータの出現以来、人類は思考できる機械を創ることを夢見てきました。 1956 年、ジョン マッ...

陳丹奇チームの新作:5%のコストでSOTAを達成、「アルパカの毛刈り」法が人気

わずか3% の計算労力と5% のコストで SOTA を達成し、1B-3B 規模の大規模オープンソース...

いくつかの最短経路アルゴリズムの比較

最短経路問題は、グラフ理論研究における古典的なアルゴリズム問題であり、グラフ(ノードとパスで構成され...

パーソナライズされた推奨の CTR 推定にディープラーニングを使用する理由は何ですか?

ディープラーニングはおそらく、過去 2 年間でコンピューター コミュニティで最もホットな言葉です。エ...

人体に入り込んで手術ができる「ソフトロボット」が登場し、2040年には宇宙に送り込まれるかも!

人工知能の活発な発展は大きな論争を引き起こしています。発展の一般的な傾向からすると、これはデメリット...

...

...

...