[51CTO.com クイック翻訳] ニューラル ネットワークは、一連のデータ内の潜在的な関係を識別する一連のアルゴリズムです。これらのアルゴリズムは、人間の脳の働きに大きく依存しています。ニューラル ネットワークは、出力基準を再設計することなく、変化する入力に適応して最適な結果を生み出すことができます。ある意味では、これらのニューラル ネットワークは生物学的ニューロンのシステムに似ています。 ディープラーニングは機械学習の重要な部分であり、ディープラーニングアルゴリズムはニューラルネットワークに基づいています。特定のアプリケーション シナリオに最適な、さまざまな機能を備えたニューラル ネットワーク アーキテクチャがいくつかあります。この記事では、特にディープラーニング向けの最もよく知られているアーキテクチャのいくつかを紹介します。 多層パーセプトロン 多層パーセプトロン (MLP) は、フィードフォワード人工ニューラル ネットワークの一種です。パーセプトロンという用語は、特に、より大きなニューラル ネットワークの前身となった単一のニューロン モデルを指します。 MLP は、入力層、隠し層、出力層の 3 つの主要なノード層で構成されます。隠し層と出力層の両方で、各ノードは非線形活性化関数を使用してニューロンとして扱われます。 MLP は、バックプロパゲーションと呼ばれる教師あり学習手法を使用してトレーニングされます。ニューラル ネットワークを初期化するときに、各ニューロンの重みを設定します。バックプロパゲーションは、ニューロンの重みを調整して目的の出力に近づけるのに役立ちます。 MLP は、表形式のデータセット、分類予測問題、回帰予測問題を含むプロジェクトに最適です。 畳み込みニューラルネットワーク 畳み込みニューラル ネットワーク (CNN) モデルは、画像などのグリッド パターンを持つデータを処理します。特徴の空間階層を自動的に学習することを目的としています。 CNN には通常、畳み込み層、プーリング層、完全接続層という 3 種類の層が含まれます。 畳み込み層とプーリング層は特徴抽出のタスクを実行し、抽出された特徴は完全に接続された層によって最終出力にマッピングされます。 CNN は画像処理に最適です。 画像認識、画像分類、物体検出、顔認識などは、CNN の応用シナリオの一部です。 リカレントニューラルネットワーク 再帰型ニューラル ネットワーク (RNN) では、前のステップの出力が現在のステップへの入力としてフィードバックされます。 RNN の隠し層はこのフィードバック システムを実装します。この隠し状態には、シーケンス内の前のステップに関する情報を保存できます。 RNN の「メモリ」は、計算されたすべての情報をモデルが記憶するのに役立ちます。次に、同じパラメータを使用して各入力から出力が生成され、パラメータの複雑さが軽減されます。 RNN は、主に優れた学習能力と、手書き学習や音声認識などの複雑なタスクを実行できる能力により、最も広く使用されているニューラル ネットワークのタイプの 1 つです。 RNN が適用できるその他の分野としては、予測問題、機械翻訳、ビデオのタグ付け、テキストの要約、さらには音楽作曲などがあります。 ディープビリーフネットワーク Deep Belief Networks (DBN) は、確率と教師なし学習を使用して出力を生成します。 DBN は、バイナリ潜在変数、無向層、有向層で構成されます。 DBN は、各層が順番に調整され、各層が入力全体を学習するという点で他のモデルとは異なります。 DBN では、各サブネットワークの隠し層が次のサブネットワークの可視層になります。この組み合わせにより、レイヤーごとの高速な教師なしトレーニング プロセスが可能になります。つまり、最下位の可視レイヤーから始めて、各サブネットワークに対照的な違いが適用されます。 DBN のトレーニングには貪欲学習アルゴリズムが使用されます。学習システムは一度に 1 つのレイヤーを学習します。したがって、各レイヤーは異なるバージョンのデータを受け取り、各レイヤーは前のレイヤーの出力を入力として使用します。 DBN は主に画像認識、ビデオ認識、モーションキャプチャデータに使用されます。 制限付きボルツマンマシン ボルツマン マシン (RBM) は、入力セットに対して確率分布を学習する生成的非決定論的 (確率論的) ニューラル ネットワークです。 RBM は、ディープ ビリーフ ネットワークの構成要素となる浅い 2 層のニューラル ネットワークです。 RBM の最初の層は可視層または入力層と呼ばれ、2 番目の層は隠し層と呼ばれます。これは、ノードと呼ばれるニューロンのようなユニットで構成されます。ノードは、同じレイヤー内ではなく、レイヤー間で相互に接続されます。 RBM は、次元削減、推奨システム、トピック モデリングなどのアプリケーション シナリオでよく使用されます。しかし、近年では、生成的敵対的ネットワーク (GAN) が徐々に RBM に取って代わってきました。 原題: ディープラーニングのためのトップ 5 ニューラル ネットワーク モデルとそのアプリケーション、著者: Shraddha Goled [51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください] |
<<: アルゴリズムは AI の進歩の原動力となることができるでしょうか?
最近では、最新のスマートホームテクノロジーがプリインストールされている住宅を目にすることがますます一...
エンタープライズ グレードのインテリジェント オートメーションとは何ですか?エンタープライズ レベル...
データとコンピューティング能力の向上に伴い、「機械学習」(ML)と「ディープラーニング」という用語は...
今日の世界では、データはお金を意味します。アプリベースの世界への移行に伴い、データは飛躍的に増加して...
人工知能は近年注目されている技術分野です。機械学習は人工知能のサブセットであり、人工知能分野全体の中...
[[263249]]ビッグデータダイジェスト制作出典: medium編纂者:周嘉楽、郭小白、蒋宝尚...
[[425133]] [51CTO.com クイック翻訳]長年にわたり、ビジネス マーケティングの動...
[[333631]] [51CTO.comからのオリジナル記事] 2020年7月13日の午後、Hua...
現在、あらゆるToB市場において、5G+AIが並行して未来を創造しています。 [[331677]] ...
[[435844]]人工知能用に構築されたコンピュータ システムに最適なアクセサリとコンポーネントは...
顔をスキャンして出勤記録を取ったり、顔で支払いをしたり、顔でドアを開けたり、顔をスキャンしながら生活...
最近、北京市交通委員会は新たに改訂された「北京市自動運転車両路上試験管理実施規則(試行)」を発行し、...
アップルに3年間在籍した後、同社の機械学習担当ディレクターのイアン・グッドフェロー氏が突然辞任を発表...