これらの 10 個のオープンソース機械学習ツールを使用したことがありますか?

これらの 10 個のオープンソース機械学習ツールを使用したことがありますか?

機械学習開発者として、あなたは多くの機械学習リソースに遭遇したことがあるかもしれません。今日は、オープンソースの機械学習ツールを 10 個紹介したいと思います。それらの多くはあなたのプロジェクトで使用できます。役立つ場合は、お気軽に転送して収集してください。

[[345996]]

1. オートML

AutoML は、機械学習モデルを自動的に選択してトレーニングし、適切なアルゴリズムを選択し、ハイパーパラメータの調整を支援できるソフトウェアです。 AutoML は現在、分類、予測、回帰の問題の解決をサポートしていますが、教師なし学習や複雑なデータ型には適していません。しかし、AutoML が Azure Machine Learning サービスまたは ML.NET で使用できるのは素晴らしいことです。

なお、AutoML は無料ですが、Azure Machine Learning サービスまたは ML.NET と併用する場合は、それに関連する料金を支払う必要があります。

2. アコード

Accord.net は、画像およびオーディオ パッケージが付属する計算機械学習フレームワークです。モデルのトレーニングや、オーディション、コンピューター ビジョンなどのインタラクティブ アプリケーションの作成に役立ちます。オーディオ ファイルのテストや処理に非常に役立ちます。さらに、ツール名に .net が含まれているので、基本ライブラリは C# 言語であることがわかります。

3. Azure Machine Learning スタジオ

Azure は、ユーザーに AI 機能を提供することを目的として、モジュールとデータ セットを簡単に接続できる手段です。 CPU と GPU の両方で実行できるため、ユーザーにとって非常に便利で安心です。

4. Google Cloud AutoML

Google Cloud AutoML は、テキスト認識、音声認識などのさまざまなサービスを作成できる事前トレーニング済みのモデルを提供します。現在、Google Cloud AutoML は主に企業、特に人工知能業界に注力している企業で使用されています。

5. Jupyterノートブック

Jupyter ノートブックは非常に人気のある機械学習ツールです。その最大の利点は、処理が速く、効率が高いことです。 Jupyter は、Julia、R、Python 言語をサポートしています。ノートブックの形式で動的コードを保存および共有でき、GUI 経由でアクセスすることもできます。

6. クニメ

Knime は、グラフィカル ユーザー インターフェイス (GUI) に基づくオープン ソースの機械学習ツールであり、通常はデータ操作、データ マイニングなどのデータ関連の目的に使用されます。コードを記述せずに、エンドツーエンドのデータ サイエンス ワークフローを完了できます。さらに、初心者を支援するために、明確なインターフェイスを備えたドラッグアンドドロップインターフェイスが付属しており、作成と生成が簡単になります。

7. ピトーチ

Pytorch はディープラーニング フレームワークであり、機械学習にとって最も重要なツールの 1 つです。GPU を適切に制御できるため、高速かつ効率的です。そのため、ディープニューラルネットワークの構築やテンソル計算など、機械学習の最も重要な側面で使用されます。

さらに、Pytorch の名前は Python に非常に似ていますか? 実際、これは完全に Python に基づいています。

8. ラピッドマイナー

プログラマーでない場合は、RapidMiner が非常に役立ちます。操作は簡単で、ドラッグ アンド ドロップするだけです。優れたインターフェースを備えたデータ サイエンス プラットフォームです。クロスプラットフォームのオペレーティング システムで動作し、独自のデータを使用して独自のモデルをテストできます。

9. サイキットラーン

Scikit-Learn はオープンソースの機械学習パッケージです。回帰、クラスタリング、分類、次元削減、前処理を実行できる多目的統合です。Python の 3 つの主要ライブラリ NumPy、Matplotlib、SciPy をベースに構築されており、テストやモデル トレーニングにも役立ちます。

10. テンソルフロー

TensorFlow は大規模かつ数値的な機械学習に適しており、自然言語処理や画像分類でよく使用されます。これは機械学習とニューラル ネットワーク モデルのコレクションであり、最も優れている点は CPU と GPU の両方で実行できることです。

<<:  人工知能を人間化して、その信頼性を確立するにはどうすればよいでしょうか?

>>:  自動運転に関して、私たちはこれら 3 つの重要な問題を意図的に避けているのでしょうか?

ブログ    
ブログ    
ブログ    

推薦する

無人スーパーマーケットの仕組みをご存知ですか?

[[280914]]近年、無人スーパーマーケットが大人気となり、さまざまなeコマース企業が独自の無...

知識が求められるポストディープラーニング時代に、知識グラフをいかに効率的かつ自動的に構築するか

ナレッジグラフは何ができるのでしょうか?ナレッジグラフを自動的かつ効率的に構築するにはどうすればよい...

ロンドンの顔認識で誤った人物が逮捕される:合理的な使用が鍵

顔認識の応用範囲は、アクセス制御やデバイスログインから空港や公共エリアの監視まで、非常に広範囲にわた...

...

機械学習の導入を成功させるための3つのヒント

人工知能の時代において、機械学習、自然言語処理 (NLP)、認知検索技術が急速に導入されているのは当...

フランスのヒューマノイド ロボット Reachy は、オープン ソース + モジュール式で、最も複雑な Raspberry Pi ロボットの 1 つです。

Raspberry Pi は、小さなおもちゃの車から産業用ロボットアームに至るまで、あらゆるものに...

Open Interpreterは、大規模な言語モデルのコードをローカルで実行できるようにするオープンソースツールです。

最近、Github を閲覧していたところ、Open Interpreter という魔法のツールを見つ...

ネットワークケーブルに沿って登ることが現実になりました。Audio2Photorealは、対話を通じてリアルな表情や動きを生成できます

携帯電話の冷たい画面を通して友達とチャットするときは、相手の口調を推測する必要があります。彼/彼女が...

...

...

マインドタイピングがネイチャーの表紙に登場! 99%以上の正確さで1分間に90文字を書く

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

Python で自然言語処理を始める

このチュートリアルの目的は、自然言語処理 (NLP) の概念を通じて Python でテキスト デー...

「未来、人類、そして人工知能」についての白熱した議論です

[51CTO.comより引用] モバイルインターネット、モノのインターネット、ビッグデータ、人工知能...

専門家:TikTokのアルゴリズムはユニークではないが、購入者はそれを自ら開発することを待ちきれない

2018年にバイトダンスがカラオケアプリ「Musical.ly」を買収し、TikTokとしてブランド...