これらの 10 個のオープンソース機械学習ツールを使用したことがありますか?

これらの 10 個のオープンソース機械学習ツールを使用したことがありますか?

機械学習開発者として、あなたは多くの機械学習リソースに遭遇したことがあるかもしれません。今日は、オープンソースの機械学習ツールを 10 個紹介したいと思います。それらの多くはあなたのプロジェクトで使用できます。役立つ場合は、お気軽に転送して収集してください。

[[345996]]

1. オートML

AutoML は、機械学習モデルを自動的に選択してトレーニングし、適切なアルゴリズムを選択し、ハイパーパラメータの調整を支援できるソフトウェアです。 AutoML は現在、分類、予測、回帰の問題の解決をサポートしていますが、教師なし学習や複雑なデータ型には適していません。しかし、AutoML が Azure Machine Learning サービスまたは ML.NET で使用できるのは素晴らしいことです。

なお、AutoML は無料ですが、Azure Machine Learning サービスまたは ML.NET と併用する場合は、それに関連する料金を支払う必要があります。

2. アコード

Accord.net は、画像およびオーディオ パッケージが付属する計算機械学習フレームワークです。モデルのトレーニングや、オーディション、コンピューター ビジョンなどのインタラクティブ アプリケーションの作成に役立ちます。オーディオ ファイルのテストや処理に非常に役立ちます。さらに、ツール名に .net が含まれているので、基本ライブラリは C# 言語であることがわかります。

3. Azure Machine Learning スタジオ

Azure は、ユーザーに AI 機能を提供することを目的として、モジュールとデータ セットを簡単に接続できる手段です。 CPU と GPU の両方で実行できるため、ユーザーにとって非常に便利で安心です。

4. Google Cloud AutoML

Google Cloud AutoML は、テキスト認識、音声認識などのさまざまなサービスを作成できる事前トレーニング済みのモデルを提供します。現在、Google Cloud AutoML は主に企業、特に人工知能業界に注力している企業で使用されています。

5. Jupyterノートブック

Jupyter ノートブックは非常に人気のある機械学習ツールです。その最大の利点は、処理が速く、効率が高いことです。 Jupyter は、Julia、R、Python 言語をサポートしています。ノートブックの形式で動的コードを保存および共有でき、GUI 経由でアクセスすることもできます。

6. クニメ

Knime は、グラフィカル ユーザー インターフェイス (GUI) に基づくオープン ソースの機械学習ツールであり、通常はデータ操作、データ マイニングなどのデータ関連の目的に使用されます。コードを記述せずに、エンドツーエンドのデータ サイエンス ワークフローを完了できます。さらに、初心者を支援するために、明確なインターフェイスを備えたドラッグアンドドロップインターフェイスが付属しており、作成と生成が簡単になります。

7. ピトーチ

Pytorch はディープラーニング フレームワークであり、機械学習にとって最も重要なツールの 1 つです。GPU を適切に制御できるため、高速かつ効率的です。そのため、ディープニューラルネットワークの構築やテンソル計算など、機械学習の最も重要な側面で使用されます。

さらに、Pytorch の名前は Python に非常に似ていますか? 実際、これは完全に Python に基づいています。

8. ラピッドマイナー

プログラマーでない場合は、RapidMiner が非常に役立ちます。操作は簡単で、ドラッグ アンド ドロップするだけです。優れたインターフェースを備えたデータ サイエンス プラットフォームです。クロスプラットフォームのオペレーティング システムで動作し、独自のデータを使用して独自のモデルをテストできます。

9. サイキットラーン

Scikit-Learn はオープンソースの機械学習パッケージです。回帰、クラスタリング、分類、次元削減、前処理を実行できる多目的統合です。Python の 3 つの主要ライブラリ NumPy、Matplotlib、SciPy をベースに構築されており、テストやモデル トレーニングにも役立ちます。

10. テンソルフロー

TensorFlow は大規模かつ数値的な機械学習に適しており、自然言語処理や画像分類でよく使用されます。これは機械学習とニューラル ネットワーク モデルのコレクションであり、最も優れている点は CPU と GPU の両方で実行できることです。

<<:  人工知能を人間化して、その信頼性を確立するにはどうすればよいでしょうか?

>>:  自動運転に関して、私たちはこれら 3 つの重要な問題を意図的に避けているのでしょうか?

ブログ    

推薦する

...

...

人工知能を通じて「自分を知る」

2016年、AlphaGoが人間のチェスプレイヤーであるイ・セドルを破り、人工知能に関する研究と考...

人工知能と教育が出会うと、どのような火花が生まれるのでしょうか?

[[249507]]過去 1 か月間の教育業界のホットなキーワードを本当に選ぶとしたら、それは間違...

これは陰謀論ですか? AIさん、どう思いますか?

[[385257]]ビッグデータダイジェスト制作出典: iflscience編集:赤道のパンダボデ...

2022年には大学卒業者数が1000万人を超えるが、AI関連の仕事の月給はたったの2万4000円?

2022年、伝説の「黄金の3月と銀の4月」がやって来ます... 「青銅三・鉄四」に変身しました… ...

...

オートメーション研究所の拡散モデル「Brain Reading」、MindDiffuserは人間の脳の視覚イメージを鮮明に再現します

脳信号から対応する視覚刺激を再構築することは、意義深く困難な作業です。これまでの研究では、一部の自然...

ChatGPTの10の実用的なビジネスユースケース

ChatGPT のビジネスユースケースは数多く登場していますが、組織は自社の特定のニーズに最適なシナ...

ロボティック プロセス オートメーション (RPA): 6 つのオープン ソース ツール

[[321682]] [51CTO.com クイック翻訳] 多くの新しいソフトウェアを実装する場合と...

無料の Python 機械学習コース 1: 線形回帰アルゴリズム

最も基本的な機械学習アルゴリズムは、単一の変数を持つ線形回帰アルゴリズムです。現在、非常に多くの高度...

3つの主要なSQL ServerアルゴリズムのI/Oコストの簡単な分析

1. ネストループ結合アルゴリズム:考え方は非常に単純かつ直接的です。関係 R の各タプル r を、...

ChatGPTのメタバージョンが登場: Llama 2がサポートされ、Bing検索に接続され、ザッカーバーグがライブでデモを実施

今朝早く、毎年恒例の Meta Connect カンファレンスで、AI に焦点を当てた一連の発表が行...