ディープラーニングの基本概念のチートシート

ディープラーニングの基本概念のチートシート

ディープラーニングは多くの初心者にとってわかりにくいかもしれません。急速に発展するにつれて、多くの新しい概念や用語が生まれます。この記事は、いくつかの一般的な用語を改めて紹介するものです。

勾配∇(微分演算子): 勾配

勾配は、複数のベクトルを入力として受け取り、単一の値を出力する関数の偏微分です。典型的な関数は、ニューラル ネットワークの損失関数です。勾配は、変数入力が増加するにつれて出力値が増加する方向を示します。言い換えれば、損失値を減らしたい場合は、勾配の反対方向に進むだけで済みます。

バックプロパゲーション

簡単に言えば、バックプロパゲーションとは、順方向伝播の入力値によって計算された誤差を入力値に戻すことを意味し、微積分におけるチェーン呼び出しでよく使用されます。

シグモイド σ

ニューロンの出力を [0,1] の範囲に制限するために使用されるしきい値関数は、ギリシャ語でシグマと呼ばれる S 字型のグラフに少し似ています。シグモイド関数はロジスティック関数の特殊なケースです。

正規化線形単位または ReLU

Sigmoid関数の出力間隔は[0,1]ですが、ReLUの出力範囲は[0,infinity]です。つまり、Sigmoidはロジスティック回帰に適しており、ReLUは正の数を表すのに適しています。ディープラーニングでは、ReLU はいわゆる勾配消失問題の影響を受けません。

タン

Tanh 関数は、ネットワークの重みを [-1, 1] の間で制御するのに役立ちます。上の図からわかるように、0 に近いほど勾配値が大きく、勾配の範囲は [0, 1] の間であり、これはシグモイド関数の範囲と一致しています。これにより、勾配の偏差を回避することもできます。

LSTM/GRU

これは最初にリカレント ニューラル ネットワークで使用されましたが、メモリ ユニットが少ない他の場所でも使用できます。主にトレーニング中に入力の状態を維持できるため、RNN が入力の事前コンテキストを失うことによって発生する勾配消失問題を回避できます。

ソフトマックス

Softmax 関数は、ニューラル ネットワークの最後に分類機能を追加するためによく使用されます。この関数は主に多変量ロジスティック回帰に使用されますが、多変量分類問題にも使用できます。クロスエントロピーは損失関数としてよく使用されます。

L1 および L2 正規化

正則化項は、係数にペナルティ項を追加することで過剰適合を回避します。正則化項は、モデルの複雑さを示すこともできます。 L1 と L2 の違いは、L1 ではモデルのスパース性を保証できることです。正則化項を導入することで、モデルの一般化能力が確保され、トレーニング データの過剰適合を回避できます。

ドロップアウト

ドロップアウトは、過剰適合を回避し、ほぼ指数時間で複数の異なるニューラル ネットワーク構造をマージすることもできます。この方法では、各レイヤー内の明示的なレイヤーと隠しレイヤーがランダムに選択されます。これは通常、実際のレイヤー ドロップアウトの固定比率によって決定されます。

バッチ正規化

ディープラーニングでは、レイヤーが多すぎると、いわゆる内部共変量シフト、つまりトレーニング中のネットワークパラメータの変化によるネットワーク活性化分布の変化につながります。この変数の移行を減らすことができれば、ネットワークをより速くトレーニングできます。バッチ正規化は、各処理ブロックを正規化することでこの問題を解決します。

目的関数

つまり、損失関数または最適化スコア関数です。ディープラーニング ネットワークの目標は、この関数の値を最小化して、ネットワークの精度を向上させることです。

F1/Fスコア

モデルの精度を測定するために使用される基準:

  1. F1 = 2 * (精度* 再現率) / (精度+ 再現率)精度=陽性 / (陽性 +陽性) 再現率 =陽性 / (陽性 +陰性)

予測されたラベル値と実際のラベル値のギャップを計算するために使用されます。基本的な定義は次のとおりです。


[この記事は51CTOコラムニスト「張子雄」によるオリジナル記事です。転載が必要な場合は51CTOを通じて著者にご連絡ください]

この著者の他の記事を読むにはここをクリックしてください

<<:  BATのアルゴリズムエンジニアにまた拒否された

>>:  AI実践者の意見:ディープラーニングは強力だが、過大評価してはいけない

ブログ    
ブログ    
ブログ    

推薦する

...

私はAIとキングオブグローリーを6ラウンドプレイしましたが、精神が崩壊しました

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

推奨に値する 7 つの優れたオープンソース AI ライブラリ

[[406029]] [51CTO.com クイック翻訳]人工知能 (AI) 研究の分野では、Ten...

速報、劉強東が核爆弾を投げる!宅配便は早く消えます!

本当に信じられません、この時代の変化のスピードは想像を絶します!革新!革新!再びイノベーション!次か...

今後5~10年で、人工知能+ブロックチェーンは第三者による支払いを終わらせるだろう

インターネットの出現により、伝統的な取引方法は一変しました。第三者保証の取引プラットフォームとして、...

スタートアップにハイエンド AI を実装するにはどうすればよいでしょうか?

【51CTO.comオリジナル記事】 [[193891]] 人工知能は、1956 年のダートマス会...

職場におけるAIとARの進化

[[434145]]職場における支援/拡張現実 (AR) と人工知能 (AI) の可能性を最大限に引...

...

あるいは人間の目よりも鮮明です!世界初の3D人工眼球が発売され、何百万人もの人々が視力を取り戻す

[[327384]] 5月24日、メディアの報道によると、香港科技大学の研究者らがネイチャー誌に発表...

最大速度アップは20億倍! AIが物理シミュレーションエンジンに革命を起こす

[[422090]]オックスフォード大学の研究によると、機械学習モデルは従来の物理ソルバーに比べて物...

...

Tensorflowを使用して畳み込みニューラルネットワークを構築する

1. 畳み込みニューラルネットワーク畳み込みニューラル ネットワーク (CNN) は、人工ニューロン...

Google が「シャンプー」という 2 次最適化アルゴリズムを提案、Transformer のトレーニング時間を 40% 削減

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

毎日のアルゴリズム: バランスのとれた二分木

[[426529]]この記事はWeChatの公開アカウント「3分でフロントエンドを学ぶ」から転載した...