1.3MB の超軽量 YOLO アルゴリズム!すべてのプラットフォームで利用可能、45% 高速 | オープンソース

1.3MB の超軽量 YOLO アルゴリズム!すべてのプラットフォームで利用可能、45% 高速 | オープンソース

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

最も軽量な YOLO アルゴリズムがリリースされました!

これは非常に小さなモデルで、現在最速の YOLO アルゴリズムとして知られています。サイズはわずか1.3 MBで、シングルコアの速度は 1 秒あたり 148 フレームであり、モバイル デバイスに簡単に展開できます。

[[341000]]

さらに、このYOLO-Fastest アルゴリズムは、すべてのプラットフォームのニーズを満たします。

PyTorch、Tensorflow、Keras、Caffe のいずれであっても、すべてのプラットフォームで普遍的であると言えます。

さらに、作者は超軽量YOLOの「拡大版」もリリースしました。これも3.5MBしか必要とせず、YOLOv3よりも優れたターゲット検出効果を実現できます。

では、このような軽量ネットワークの検出効果はどうでしょうか?

1.3MB 超軽量 YOLO

検出効果

下の写真は、速く走っている動物を示しています。ご覧のとおり、アルゴリズムはこの動物が鶏である確率が 95% であると予測しています。

動物実験だけでなく人間実験にも効果的です。

図からわかるように、正面の人物の予測確率は90% を超えています。横に近い顔でもシステムは正確に予測できますが、確率は 50% 近くと低くなります。

さらに、YOLOは歩行者や動物だけでなく、テーブルやボトルなどの対象物も検出できることがわかります。

もちろん、テーブルの上には他のボトルもありましたが、それらは検出されませんでした。

このような検出結果を達成するには、1.3MB の YOLO-Fastest モデルのみが必要です。3.0MB の MobileNet-YOLOv3 と比較すると、パラメータが 65% 少なく、速度が 45% 高速です。

ハードウェア要件がそれほど高くなく、精度がより重要な場合は、ここでの YOLO-Fastest-XL がより適しています。

YOLO-Fastest アルゴリズムのこの「大規模バージョン」は、3.5MB のアルゴリズム モデルであり、mAP ははるかに高く、68.8% に達します。

全体的に、YOLO-Fastest は、ある程度の精度 (約 5% mAP) を犠牲にして速度を大幅に向上させたターゲット検出モデルです。

最も強力なモバイル軽量ニューラルネットワークと組み合わせ

なぜこんなに小さいのかというと、このYOLO-Fastestが、モバイルデバイス上で最も強力な軽量ニューラルネットワークとして知られるEfficientNet-liteとペアになっているからです。

これは MobileNet よりも軽量なニューラル ネットワークですが、画像分類には優れたパフォーマンスを発揮します。

EfficientNet-liteアーキテクチャ

ただし、このような圧縮を行うと、ある程度の精度が犠牲になります。YOLOv3と比較すると、 YOLO-FastestモデルのmAPはわずか60.8%です

しかし、容量が限られているハードウェアの場合は、これで十分です。

では、ターゲット検出アルゴリズムで YOLO を選択する理由は何でしょうか?

YOLO: 高速オブジェクト検出

ターゲット検出アルゴリズム YOLO の核心は、モデルのサイズが小さく、計算速度が速いことにあります。

R-CNN シリーズのアルゴリズム (Fast R-CNN、Faster R-CNN など) と比較すると、YOLO の精度はそれほど良くありませんが、速度は非常に高速です。

検出速度は、前のフレーム(下図のカラフルな枠)の変化の頻度からわかります。

速度を追求する理由は、セキュリティや自動運転の分野ではターゲット検出が中核アルゴリズムであり、リアルタイム動作が求められるからです。

警備員が泥棒の存在を検知するのに数秒かかったり、自動運転車が検問所を感知するのに非常に時間がかかったりすると、結果は悲惨なものになる可能性があります。

[[341003]]

その後誕生した SSD アルゴリズムは、R-CNN アルゴリズムと YOLO アルゴリズムの妥協案のようなものです。しかし、ストレージ容量が限られている一部のハードウェアでは、YOLO のみが「ロード」されることになります。

YOLO-Fastest モデルはわずか 230 MFLOPS (1 秒あたり 230 万回の浮動小数点演算) ですが、計算能力が不十分なハードウェアでも小型マシンで実行できるようになります。

著者関連

興味深いことに、GitHub の dog-qiuqiu という作者は、以前に MobileNet 画像分類アルゴリズムに基づいて YOLOv3 (GitHub 1.1k スター) を作成しており、これもすべてのプラットフォームで使用できます。

それだけでなく、すべてのプラットフォームで汎用的なこの MobileNet-YOLOv3 は、サイズと精度の両方で MobileNet-SSD よりも優れています。

MobileNet-YOLOv3 は、サイズがわずか 8.0MB (SSD と比較して 15.1MB の削減) でありながら、mAP 73.26% (SSD と比較して 0.56% の増加) を達成しました。

ご興味がございましたら、以下のポータルをクリックして、このターゲット検出アルゴリズムをご覧ください。

ポータル

1.3MBの超軽量YOLO:
https://github.com/dog-qiuqiu/Yolo-Fastest

MobileNet-YOLO は SSD よりも優れたパフォーマンスを発揮します。
https://github.com/dog-qiuqiu/MobileNet-Yolo

<<:  滴滴出行副社長の葉潔平氏が辞任した。同氏は旅行大手のAI部門の責任者だった。

>>:  専門家:TikTokのアルゴリズムはユニークではないが、購入者はそれを自ら開発することを待ちきれない

ブログ    

推薦する

市場を席巻するアメリカの5大テクノロジー企業はAI時代にさらに勢力を拡大するのでしょうか?

アメリカのデジタルテクノロジー大手は、流行病の打撃を受けた後、軌道に戻った。数日前、Alphabet...

...

クラウドコンピューティング機械学習プラットフォームの選び方

クラウド コンピューティング 機械学習プラットフォームは、機械学習のライフ サイクル全体をサポートす...

...

小さなターゲットを検出するためのディープラーニングの一般的な方法

[[427475]]導入ディープラーニングによる物体検出、特に顔検出では、解像度が低い、画像がぼやけ...

アンドリュー・ングのパレートの法則: データの 80% + モデルの 20% = より優れた機械学習

機械学習の進歩がモデルによってもたらされるのか、それともデータによってもたらされるのかは、今世紀の論...

ChatGPT vs AutoGPT: トップ言語モデルの比較

ChatGPTを理解するOpenAI によって開発された ChatGPT は、受信した入力に基づいて...

...

百度副社長の尹世明氏:人工知能のプライバシー問題は技術で解決できる

[[260878]] 「当社は、個人データへのアクセスを必要としないマルチパーティデータコンピューテ...

700 を超えるチームが登録し、「ICV アルゴリズム研究タスクの第 1 バッチ」の登録フェーズが成功裏に終了しました。

中国の自動車産業は、インテリジェンスとネットワーキングを核として、競争の後半期に突入しています。新世...

PythonでChatGPT APIを使用してリアルタイムデータを処理する方法

翻訳者 |李睿レビュー | Chonglou OpenAI が立ち上げた GPT は現在、世界で最も...

...

製造業者はデジタルツインをどのように活用して生産性を向上できるでしょうか?

メーカーは、競争上の優位性を獲得し、コストを削減し、顧客によりカスタマイズされた体験を提供するために...

AI倫理: CIOが問うべき5つの質問

[51CTO.com クイック翻訳] 人工知能ツールを導入する IT リーダーは、責任の取り方、プラ...

AIツールはリモートワーク中のチームの生産性向上に役立ちます

[[385429]]人工知能は、自宅からリモートで仕事をしながら生産性を維持したい労働者にとって重要...