エッジデバイスとコンピューティングにおける AI アプリケーションが未来である理由は何でしょうか? 変化は常に発展の不可欠な部分です。テクノロジーは急速に進歩しており、最大のメリットを実現するためには、企業も自らこれらのテクノロジーを取り入れる必要があります。メインフレームからクラウドへのコンピューティングの移行を目撃したのと同じように、人工知能 (AI) はエッジ IoT デバイスとネットワークに移行しています。データが増え続けるにつれて、デバイス上でデータのストレージとデータ コンピューティングを配置する場所を選択する必要があります。 Qualcomm、NVIDIA、Intel などの企業が、この現実の実現を支援しています。 エッジサイトのコンピューティング システムは中央データ センターのシステムよりもはるかに小規模ですが、今日の x86 コモディティ サーバーの処理能力が大幅に向上したおかげで成熟し、現在では多くのワークロードを正常に実行しています。さらに、アプリケーションがレイテンシに敏感な場合は、Edge の方が適しています。エッジ プラットフォームの機能には、プライバシー、セキュリティ、低レイテンシ、帯域幅の向上などがあります。
エッジAIとは何ですか? ハードウェア デバイス上でローカルに処理される AI アルゴリズムを指します。オンデバイス AI とも呼ばれます。これにより、デバイスでデータを数ミリ秒以内に処理し、リアルタイムの情報を得ることができます。 Edge AI を使用すると、ユーザーはデバイス上のアプリから必要なパーソナライズされた機能を利用できます。 IDC によると、エッジ AI ソフトウェア市場は 2018 年の 3 億 5,500 万ドルから 2023 年までに 1 兆 1,200 億ドルに成長すると予想されています。 「エッジコンピューティングでは、AI が最も一般的なワークロードです」と IDC のリサーチ ディレクターである Dave McCarthy 氏は述べています。「IoT の実装が成熟するにつれて、リアルタイムのイベント検出のために生成時点で AI を適用することへの関心が高まっています。」 クラウドエッジ 現在、AI 処理は、膨大な計算能力を必要とするクラウドベースのデータセンターでディープラーニング モデルを使用して行われています。レイテンシは、クラウド環境やクラウドを活用した IoT デバイスが直面する最も一般的な問題の 1 つです。さらに、クラウドへのデータ転送中にデータが盗難または漏洩するリスクが常に存在します。エッジを使用すると、データを照合してからリモートの場所に送信し、さらに分析することができます。さらに、エッジ AI によりインテリジェントな IoT 管理が可能になります。 エッジベースのアーキテクチャでは、推論はデバイス上でローカルに実行されます。これにより、クラウドに流れるネットワーク トラフィックが削減され、IoT デバイスの応答時間が最小限に抑えられるため、管理上の決定をデバイスの近くでローカルに行うことができるようになり、多くの利点が得られます。 エッジ AI 需要の推進要因: AI 処理をエッジに押し上げる必要がある要因はいくつかあります。
エッジデバイス製品:
上位 3 つのエッジ製品は次のとおりです。
NVIDIA® Jetson Nano™ 開発キットは、最も広く使用されている人気のツールであり、これまでにないサイズ、電力、コストで最新の AI ワークロードを実行するためのコンピューティング パフォーマンスを提供します。開発者、学習者、メーカーは、画像分類、オブジェクト検出、セグメンテーション、音声処理などのアプリケーション向けの AI フレームワークとモデルを実行できるようになりました。また、ボード サポート パッケージ (BSP)、Linux OS、ディープラーニング、コンピューター ビジョン、GPU コンピューティング、マルチメディア処理などのための NVIDIA CUDA?、cuDNN、TensorRT? ソフトウェア ライブラリも含まれています。このソフトウェアは、簡単にフラッシュできる SD カード イメージでも利用できるため、すぐに簡単に使い始めることができます。 その他の注目すべきものとしては、NVIDIA Jetson TX1、TX2、TX2i(より高い振動、温度と湿度の範囲、ほこりに耐える)、RISC-V AI + IoT用のSipeed Maixduinoキット、Raspberry Pi 4コンピューターモデルB、Coral開発ボードなどがあります。 実用例: エッジ AI が私たちの未来を変えることは間違いありません。企業や会社は、顧客に効率的で手間のかからない体験を提供するために、これを導入し始めています。以下に例をいくつか挙げます。
エッジ AI の用途と可能性は、業界や企業によって異なります。エッジベースの推論はクラウド コンピューティングのより優れた代替手段であることが証明されていますが、この分野ではまだ多くの作業が必要です。 |
<<: オートメーション・エニウェア、世界初のウェブベースRPAプラットフォームを発表
>>: ケーススタディ | 埋め込みに基づく特徴セキュアな計算
[[327792]]はじめに: この質問は、実はほとんどのプログラマーに当てはまります。国内のイン...
突然でしたね… Meta の MR ヘッドセットは舌を追跡できるようになりました。効果は次のようにな...
AIOps 市場が成熟するにつれて、業界関係者の多くは、プラットフォームがネイティブにデータを取得し...
[[264899]] [51CTO.com クイック翻訳] ハードウェア分野の変化はどのくらい速い...
全体像を捉えるモデルに関して言えば、Stability AI が 2022 年にリリースした Sta...
ニシャ・アーヤ著翻訳者 | ブガッティレビュー | Chonglou生成 AI には現在どのような機...
[[337084]]バイオメディカルなどの専門分野では、NLP モデルのトレーニングには、特定のデー...
2021年に入ってから、自動運転分野の開発は着実に進展しており、4月には自動運転関連のさまざまな動き...
[[201448]]私は、TensorFlow リカレント ニューラル ネットワークのチュートリアル...
大規模言語モデル (LLM) は、学界と産業界の両方で大きな進歩を遂げてきました。しかし、LLM の...
ディープラーニングを学ぶ過程では、私たちが当たり前だと思っているさまざまな噂やさまざまな「こだわり」...