エッジ AI はどのようにして将来の AI および IoT トレンドのロードマップとなるのでしょうか?

エッジ AI はどのようにして将来の AI および IoT トレンドのロードマップとなるのでしょうか?

エッジデバイスとコンピューティングにおける AI アプリケーションが未来である理由は何でしょうか?

変化は常に発展の不可欠な部分です。テクノロジーは急速に進歩しており、最大のメリットを実現するためには、企業も自らこれらのテクノロジーを取り入れる必要があります。メインフレームからクラウドへのコンピューティングの移行を目撃したのと同じように、人工知能 (AI) はエッジ IoT デバイスとネットワークに移行しています。データが増え続けるにつれて、デバイス上でデータのストレージとデータ コンピューティングを配置する場所を選択する必要があります。 Qualcomm、NVIDIA、Intel などの企業が、この現実の実現を支援しています。

エッジサイトのコンピューティング システムは中央データ センターのシステムよりもはるかに小規模ですが、今日の x86 コモディティ サーバーの処理能力が大幅に向上したおかげで成熟し、現在では多くのワークロードを正常に実行しています。さらに、アプリケーションがレイテンシに敏感な場合は、Edge の方が適しています。エッジ プラットフォームの機能には、プライバシー、セキュリティ、低レイテンシ、帯域幅の向上などがあります。

[[331787]]

エッジAIとは何ですか?

ハードウェア デバイス上でローカルに処理される AI アルゴリズムを指します。オンデバイス AI とも呼ばれます。これにより、デバイスでデータを数ミリ秒以内に処理し、リアルタイムの情報を得ることができます。 Edge AI を使用すると、ユーザーはデバイス上のアプリから必要なパーソナライズされた機能を利用できます。

IDC によると、エッジ AI ソフトウェア市場は 2018 年の 3 億 5,500 万ドルから 2023 年までに 1 兆 1,200 億ドルに成長すると予想されています。 「エッジコンピューティングでは、AI が最も一般的なワークロードです」と IDC のリサーチ ディレクターである Dave McCarthy 氏は述べています。「IoT の実装が成熟するにつれて、リアルタイムのイベント検出のために生成時点で AI を適用することへの関心が高まっています。」

クラウドエッジ

現在、AI 処理は、膨大な計算能力を必要とするクラウドベースのデータセンターでディープラーニング モデルを使用して行われています。レイテンシは、クラウド環境やクラウドを活用した IoT デバイスが直面する最も一般的な問題の 1 つです。さらに、クラウドへのデータ転送中にデータが盗難または漏洩するリスクが常に存在します。エッジを使用すると、データを照合してからリモートの場所に送信し、さらに分析することができます。さらに、エッジ AI によりインテリジェントな IoT 管理が可能になります。

エッジベースのアーキテクチャでは、推論はデバイス上でローカルに実行されます。これにより、クラウドに流れるネットワーク トラフィックが削減され、IoT デバイスの応答時間が最小限に抑えられるため、管理上の決定をデバイスの近くでローカルに行うことができるようになり、多くの利点が得られます。

エッジ AI 需要の推進要因:

AI 処理をエッジに押し上げる必要がある要因はいくつかあります。

  • デバイス上でのオンライン決済の使用、トレーニング アクティビティの監視など、ユーザーやデバイスの場所に関係なく、リアルタイムの顧客エンゲージメントを実現します。
  • エッジデバイス上で大規模な DNN モデルを実行できます。 Google の TensorFlow Lite、Facebook の Caffe2Go、Apple の CoreML、Nervana の Neural Network Distiller、SqueezeNet など、いくつかのフレームワークとテクノロジーがモデル圧縮をサポートしています。
  • IoT センサー データを迅速に処理および分析します。
  • Edge プラットフォーム上の帯域幅コストを削減します。

エッジデバイス製品:

  • AI アプリケーションとデバイスのカテゴリに応じて、AI エッジ処理を実行するためのハードウェア オプションがいくつかあります。オプションには、中央処理装置 (CPU)、GPU、特定用途向け集積回路 (ASIC)、フィールド プログラマブル ゲート アレイ (FPGA)、システム オン チップ (SoC) アクセラレータなどがあります。エッジはほとんどの場合デバイスを指し、ネットワーク ビデオ レコーダー (NVR) などのセキュリティ カメラが含まれない限り、ネットワーク ハブやマイクロ データ センターは含まれません。

上位 3 つのエッジ製品は次のとおりです。

  • Nvidia Jetson ナノ:
  • インテル ニューラル コンピュート スティック 2
  • Google Edge TPU 開発ボード

NVIDIA® Jetson Nano™ 開発キットは、最も広く使用されている人気のツールであり、これまでにないサイズ、電力、コストで最新の AI ワークロードを実行するためのコンピューティング パフォーマンスを提供します。開発者、学習者、メーカーは、画像分類、オブジェクト検出、セグメンテーション、音声処理などのアプリケーション向けの AI フレームワークとモデルを実行できるようになりました。また、ボード サポート パッケージ (BSP)、Linux OS、ディープラーニング、コンピューター ビジョン、GPU コンピューティング、マルチメディア処理などのための NVIDIA CUDA?、cuDNN、TensorRT? ソフトウェア ライブラリも含まれています。このソフトウェアは、簡単にフラッシュできる SD カード イメージでも利用できるため、すぐに簡単に使い始めることができます。

その他の注目すべきものとしては、NVIDIA Jetson TX1、TX2、TX2i(より高い振動、温度と湿度の範囲、ほこりに耐える)、RISC-V AI + IoT用のSipeed Maixduinoキット、Raspberry Pi 4コンピューターモデルB、Coral開発ボードなどがあります。

実用例:

エッジ AI が私たちの未来を変えることは間違いありません。企業や会社は、顧客に効率的で手間のかからない体験を提供するために、これを導入し始めています。以下に例をいくつか挙げます。

  • マリオット・インターナショナルは、サムスンおよびルグランと提携し、IoT とエッジ AI を使用した世界初の IoT 対応ホテルルームを開発しました。これらの部屋は複数の場所で高度にパーソナライズされており、顧客はアプリに保存された情報に基づいて自分の希望どおりに部屋を設定できます。
  • 日本の自動車メーカー、トヨタは、自動車製造向けに設計された既存の AI エッジロボット技術を活用して、運動能力に制約のある人々の支援に取り組んでいます。
  • Amazon の配達ドローンや Domino ロボットなどの自律配達システムは、コンピューター ビジョンを使用して障害物を回避し、ルートを効率的に最適化します。両社は、エッジ AI を使用して、データ、地理位置情報、予測期間、パーソナライズされた更新情報を提供します。
  • 代わりに、工場内の AI 対応エッジ コンピューティング システムは、複数のコンピューターからのデータを相関させて、ダウンタイムにつながる問題を検出し、最終的に予測することができます。
  • Expensify の仮想アシスタント Concierge は、企業が経費報告や出張手配を自動化するのに役立ちます。顧客にリアルタイムの価格変更を通知し、顧客に代わって領収書を送信することもできます。

エッジ AI の用途と可能性は、業界や企業によって異なります。エッジベースの推論はクラウド コンピューティングのより優れた代替手段であることが証明されていますが、この分野ではまだ多くの作業が必要です。

<<:  オートメーション・エニウェア、世界初のウェブベースRPAプラットフォームを発表

>>:  ケーススタディ | 埋め込みに基づく特徴セキュアな計算

推薦する

アルゴリズムエンジニアも35歳でこのハードルにぶつかるのでしょうか?

[[327792]]はじめに: この質問は、実はほとんどのプログラマーに当てはまります。国内のイン...

...

メタヘッドセットが舌トラッキング機能を追加、ネットユーザー衝撃「理由は聞かないし、知りたくもない」

突然でしたね… Meta の MR ヘッドセットは舌を追跡できるようになりました。効果は次のようにな...

トレンド: IT の複雑さにより AIOps の必要性が高まる

AIOps 市場が成熟するにつれて、業界関係者の多くは、プラットフォームがネイティブにデータを取得し...

もうひとつ:なぜ消費者向けロボット企業は失敗しているのか?

[[264899]] [51CTO.com クイック翻訳] ハードウェア分野の変化はどのくらい速い...

...

二次編集やUnreal Engine 5へのインポートをサポートし、Stable Diffusionは3D生成機能に進化

全体像を捉えるモデルに関して言えば、Stability AI が 2022 年にリリースした Sta...

AIの未来: 次世代の生成モデルの探究

ニシャ・アーヤ著翻訳者 | ブガッティレビュー | Chonglou生成 AI には現在どのような機...

「ドメイン外」テキストは不要、Microsoft: NLP はターゲットを絞った方法で事前トレーニングする必要がある

[[337084]]バイオメディカルなどの専門分野では、NLP モデルのトレーニングには、特定のデー...

2021年4月の自動運転分野における重要な進展の概要

2021年に入ってから、自動運転分野の開発は着実に進展しており、4月には自動運転関連のさまざまな動き...

TENSORFLOW を使用してリカレント ニューラル ネットワーク言語モデルをトレーニングする

[[201448]]私は、TensorFlow リカレント ニューラル ネットワークのチュートリアル...

...

Llama2推論: RTX3090はレイテンシとスループットで4090を上回るが、A800には遠く及ばない

大規模言語モデル (LLM) は、学界と産業界の両方で大きな進歩を遂げてきました。しかし、LLM の...

機械学習に関する7つの誤解

ディープラーニングを学ぶ過程では、私たちが当たり前だと思っているさまざまな噂やさまざまな「こだわり」...

...