Google AIが新世代の「物体検出」システムをリリース

Google AIが新世代の「物体検出」システムをリリース

[[319182]]

3月19日、Google BrainとAIチームは今週、EfficientDet(効率的検出)と呼ばれる人工知能システムをリリースしました。

このシステムは計算量を削減し、より効率的な検出ターゲットを取得します。

このシステムの開発者らは、CPU や GPU と併用した場合、YOLO や AmoebaNet などの他の一般的な検出モデルよりも高速なパフォーマンスも実現できると述べています。

EfficientDet は、物体検出に関連する別のタスクでも優れたパフォーマンスを達成しました。 PASCAL を使用してオブジェクトを視覚化し、データセットをトレーニングしてセマンティック セグメンテーション実験を実行します。

EfficientDet は、Coral ボード シングルボード コンピューター向けに昨年提供された一連の高度なオブジェクト検出モデルである EfficientNet の更新バージョンです。 Google のエンジニアである Mingxing Tan、Ruoming Pang、Quoc Le の 3 人は、昨年秋に初めて発表した論文で EfficientDet の詳細を説明したが、日曜日にその論文 (コードを含む) を改訂し、更新した。

「精度と効率を最適化することを目標に、使用要件を満たすさまざまなモデルを開発したいと考えています」と、物体検出のためのニューラルネットワークアーキテクチャの設計を研究した論文には記されている。

物体検出をスケーリングする既存の方法は、精度を犠牲にしたり、リソースを大量に消費したりすることが多いと著者らは述べている。 EfficientDet は、「すべてのバックボーン、特徴ネットワーク、ボックス/クラス予測ネットワークの解像度、深度、幅を同時にスケーリング」することで、エッジまたはクラウドでオブジェクト検出を展開するための、より安価でリソースをあまり消費しない方法を可能にします。

「モデルのサイズが巨大で計算​​コストが高いため、モデルのサイズとレイテンシが厳しく制約されるロボット工学や自動運転車などの多くの現実世界のアプリケーションへの導入が妨げられている」と論文には書かれている。 「これらの現実世界のリソース制約を考慮すると、物体検出においてモデルの効率性がますます重要になります。」

EfficientDet の最適化は、Tan と Le による EfficientNet に関するオリジナルの研究に触発されています。バックボーン ネットワークとフィーチャ ネットワークの結合複合スケーリング手法を提案します。このうち、特徴ネットワークとしては双方向特徴ピラミッドネットワーク(BiFPN)が使用され、バックボーンネットワークとしてはImageNet事前学習済み特徴ネットワークが使用されます。

EfficientDet は、入力エッジが 1 つだけのノードを削除してクロススケール接続を最適化し、よりシンプルな双方向ネットワークを作成します。また、効率性とシンプルさで知られるオブジェクト検出器の一種であるシングルステージ検出器パラダイムにも依存しています。

「我々は、特徴融合中に各入力に追加の重みを追加して、ネットワークが各入力特徴の重要性を学習することを提案する」と論文には書かれている。

これは Google からの最新の物体検出ニュースです。Google の物体検出用 Google Cloud Vision システムは最近、公開 API から男性と女性のラベルを削除しました。

KHARI JOHNSON 著

<<:  顔認識技術が「無人小売」時代の到来を牽引

>>:  IoTミツバチ:私たちの未来を救う技術

ブログ    

推薦する

...

東京オリンピックでロボットが美しい風景になる

[[413763]]最近、4年に一度のオリンピックがついに東京で開催されました。フィールドでは、世界...

...

ハーバード大学の新しい研究がサイエンス誌の表紙を飾る:この機械式外骨格は「軽量」なショートパンツだ

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

国際ビデオ品質評価アルゴリズムコンテスト:Volcano Engine が優勝

7月26日、マルチメディア分野の世界最高峰の学術会議であるICME 2021で開催された「圧縮UGC...

AI + エッジコンピューティング - エッジ人工知能は本当に存在するのか?

EdgeAI はもはやブループリント段階ではありません。すでに主流として採用され、驚異的な速度で成...

5G、自動運転、AIがどの段階に到達したかを示す曲線

最近、世界で最も権威のあるIT市場調査およびコンサルティング会社であるガートナーは、新しいテクノロジ...

...

アジア太平洋地域の銀行:人工知能の活用にはまだまだ成長の余地がある

[51CTO.com クイック翻訳]パーソナライズされた付加価値サービスに対するユーザーの需要に対応...

AIと機械学習をサイバーセキュリティに組み込む方法

仕事で使われるデバイスが多様化するにつれてサイバー攻撃も増えますが、AI はそれを防ぐのに役立ちます...

...

...

AIコアとは何ですか?これら2つの機能はオンラインです

DeepMindとカリフォルニア州サンフランシスコの人工知能研究所は、マルチプレイヤーリアルタイム戦...

新しいアルゴリズムと産業チェーン市場が立ち上げられ、ArcSoft Open Platformは「技術の開放+産業のエコロジー」の新たな段階を切り開きます。

現在、業界のビジュアル AI に対する焦点は最先端技術から産業エコロジーへと移行しており、これはビ...